Chapter 28 In Brief

Restoration options for the Amazon
Key Messages & Recommendations

1) Restoration encompasses a broad suite of objectives related to the practice of recovering biodiversity and ecosystem functions and services, such as water quality, carbon sequestration, and peoples’ livelihoods. It spans aquatic and terrestrial realms, and goes beyond natural ecosystems to include the recovery of socially-just economic activities on deforested lands.

2) Within terrestrial systems, site-specific restoration options include speeding up recovery after mining, reforesting the vast swaths of deforested land, facilitating the recovery of degraded primary forests, and the restoration of sustainable economic activities in deforested lands via sustainable intensification, agroforestry, or improving farm-fallow systems.

3) Restoring aquatic systems requires applying techniques to remediate polluted aquatic and terrestrial habitats, including those affected by mining, petroleum, and plastic; developing and enforcing rules to reinstate natural flow regimes; removing barriers that fragment rivers and disrupt connectivity, and implementing collaborative partnerships to recover fisheries and floodplain habitats.

4) The high cost and complexity of many restoration options mean they should only be used as a last resort; for vast areas of the Amazon, the primary aim should be to avoid the need for future restoration by conserving forests and waterbodies.

Abstract This chapter examines site-specific opportunities and approaches to restore terrestrial and aquatic systems, focusing on the local actions and benefits. Landscape and biome-wide considerations are addressed in Chapter 29.

Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK, jos.barlow@lancaster.ac.uk
Université de Montpellier, CIRAD, UR Forests & Societies, Campus International de Baillarguet, TA C-105/D, 34398 Montpellier Cedex 5, France, sist@cirad.fr
Department of Ecology and Evolutionary Biology, Cornell University, E145 Corson Hall, Ithaca NY 14853, USA
Center for Global Change and Earth Observations, Michigan State University, 218 Manly Miles Building, 1405 S. Harrison Road, East Lansing MI 48823, USA
Environmental Change Institute, Oxford University Centre for the Environment, University of Oxford, South Parks Road, Oxford OX1 3QY, UK
Université de Montpellier, CIRAD, ART-DEV, Campus International de Baillarguet, TA C-105/D, Montpellier 34398, France
Grupo de Investigación en Biodiversidad, Medio Ambiente y Salud (BIOMAS), Universidad de Las Américas (UDLA), De Los Ccoli-mes esq, Quito 170513, Ecuador
Laboratório de Ictiologia e Pesca, Departamento de Ciências Biológicas, Universidade Federal de Rondônia (UNIR), Av. Pres. Dutra 2965, Olaria, Porto Velho RO 76801-058, Brazil
Embrapa Amazônia Oriental, Trav. Dr. Enés Pinheiro, s/n°, Bairro Marco, Belém PA 66095-903, Brazil
Department of Natural Resources, Cornell University, 226 Mann Drive, Ithaca NY 14853, USA
School of Geography, University of Leeds, Leeds LS2 9JT, UK
Department of Natural Sciences, Manchester Metropolitan University, All Saints Building, Manchester M15 6BH, UK
Department of Environmental Sciences, Wageningen University and Research, PO Box 47, 6700AA Wageningen, The Netherlands
Smithsonian Conservation Biology Institute & Smithsonian Tropical Research Institute, 3001 Connecticut Avenue NW, Washington DC 20008, USA
Departamento de Ecologia e Conservação, Instituto de Ciências Naturais, Universidade Federal de Lavras, Aquenta Sol, Lavras MG 37200-900, Brazil
Instituto do Homem e Meio Ambiente da Amazônia (IMAZON), Trav. Dom Romualdo de Seixas 1698, Edifício Zion Business 11th Floor, Bairro Umarizal, Belém PA 66055-200, Brazil
Agroforestry Research Center of Acre, Embrapa Acre, Rodovia BR-364, Km 14 (Rio Branco/Porto Velho), Rio Branco AC 69900-970, Brazil
Introduction Human-driven changes across Amazonian landscapes have affected biodiversity and associated ecological processes; this, in turn, has direct and indirect impacts on human well-being. Although much of the focus in the Amazon should be on preventing further forest loss and degradation (see Chapter 27), there is growing awareness of the importance of restorative actions aimed at reversing these processes. Restoration could be a fundamental component of nature-based solutions that address critical societal challenges\(^1\), including the protection and sustainable management of aquatic and terrestrial ecosystems, whether natural, human-made, or a combination of both\(^2\).

Definitions and aims of restoration Before examining the role of restoration, we must define it across the aquatic and terrestrial realms. We use restoration as an overarching term that encompasses a broad suite of objectives related to the practice of recovering biodiversity and ecosystem functions and services, such as water quality, carbon sequestration, and/or peoples’ livelihoods\(^3\). Our use of restoration therefore includes specific terms such as rehabilitation, remediation, and rewilding. Crucially, restoration also includes the recovery of sustainable and socially-just economic activities on deforested lands. In many cases, actions will require avoiding further environmental harm as well as encouraging recovery.

Restoration actions can be either (human) assisted or (natural) passive. We specify which approach is required where relevant to the outcome, but recognize that this is often a continuum. Even passive restoration of secondary or degraded forests can require active decision-making and management interventions (e.g., fire control, fencing). Finally, spatial considerations are not considered here; the strategic planning of restoration options across the Amazon basin and within landscapes and catchments are addressed in Chapter 29.

Terrestrial restoration options

Restoration after complete soil removal Mineral and hydrocarbon extraction remove or alter soils, disrupt nutrient cycling, and severely inhibit forest recovery by destroying the soil seed bank and soil biota\(^4\)–\(^6\). Additional ancillary effects such as soil erosion and surface and groundwater pollution through mercury (Hg) contamination and/or acid mine drainage can be detected hundreds of kilometers away from mine-leased sites\(^7\)–\(^8\). The level of degradation from hydrocarbon extraction means that full recovery is highly unlikely, and recovery rates are low or stalled completely\(^9\). As a result, focusing on reviving functional (primary production, energy flows, and nutrient cycles) and ecological (species composition, dispersal mechanisms, distinct evolutionary lineages) processes through active restoration becomes crucial\(^10\)–\(^12\). Active techniques to restore polluted lands include improving soil conditions by replanting leguminous tree species\(^13\) or inoculating soils with degrading microorganisms\(^13\).

Many Amazonian countries have developed systematic processes for post-mining restoration that include backfilling mined sites with topsoil and treating and refilling tailing ponds as part of ‘close as you go’ strategies. For larger mines, enforcement of restoration after mine closure is often tied to environmental and social safeguards from major multilateral financial institutions. However, there is a lack of monitoring and enforcement of mining policies, and they are generally weak or non-existent for medium to small-scale operations. Furthermore, there are no schemes to restore areas impacted by illegal mining.

Restoration of vegetation on deforested land The loss of at least 867,675 km\(^2\) of Amazonian primary forests to date means that there are many opportunities for forest restoration. Most Amazonian secondary forests resulting from passive restoration are less than 20 years old\(^14\). Within the Brazilian Amazon, the median age is just seven years, and very young secondary forests (≤5 years old) represent almost half of the total secondary forest extent\(^15\). The growth and ecological condition of these secondary forests can be improved through active management. In some cases, fencing can be important to
Chapter 28 in Brief: Restoration options for the Amazon

Science Panel for the Amazon

Protect them from livestock, but excluding fire is a key priority: secondary forests can be more flammable than primary forests as they are drier and hotter in the daytime, and burned secondary forests recover at a much slower rate. The value of secondary forests will also be enhanced by protecting existing primary forests, as it will promote species’ colonization, which can enhance the value of secondary forests for biodiversity and carbon stocks. Yet, protecting secondary forests from disturbance and clearance remains challenging; they are often found in heavily deforested landscapes and considered to have little value in their own right, which may be a key driver of increases in their clearance rates in the past decade.

Regarding active restoration, approaches vary, but one of the most popular involves planting seedlings of varying numbers of species. The spatial configuration of active restoration matters; nurse trees can encourage seed dispersal into restoration areas, and applied nucleation (where planting in small patches encourages forest recovery at larger scales) has proven successful in other parts of the Neotropics.

Restoration of degraded forests It is estimated that 17% of Amazonian forests were degraded by disturbances such as logging, fires, or windthrow between 1995 and 2017. Crucially, during this period, 14% of degraded forests were eventually deforested and 29% were degraded again, highlighting the importance of protecting these degraded forests and allowing them to recover. The enormous spatial scale and complexity of forest degradation in the Amazon means that the most cost-effective and scalable strategies must focus on preventing disturbance events from occurring in the first place, or from re-occurring where they have already occurred. The complex set of human drivers of disturbance means this will involve a broad range of strategies. Some degradation can be avoided by reducing deforestation itself. The prevention of forest fires will involve reducing or controlling ignition sources in the landscape, such as fires used in the deforestation process, and linking early detection of fires to the rapid deployment of fire combat teams. Avoiding illegal and conventional logging is key, but remains an enormous challenge across the Amazon. Other efforts should try to prevent the co-occurrence of disturbances, as their combined impacts can exacerbate ecological change and limit recovery.

Restoration of sustainable economic activities in deforested lands Innovative solutions for restoration of agroecosystems and sustainable production of food, fiber, and other bioproducts on deforested lands are vital for reconciling environmental objectives with inclusive and equitable economic development, particularly at the local level. The need for sustainable and socially-just economic activities on deforested lands is greatest where agriculture is no longer or not yet profitable. Here we present three broad approaches to enhancing productivity.

(i) Sustainable intensification, i.e. increasing the productivity of land, labor, or capital while reducing environmental impacts, has particular potential for pastures, provided that effective governance systems are able to avoid further land conversion and guarantee sustainable development. According to Strassburg et al., increasing the productivity of pastures in the Brazilian Amazon to just 49-52% of their potential would be sufficient to meet the demand for food, wood, and biofuels by 2040, without the need to convert additional areas of native vegetation. This would result in the mitigation of an estimated 14.3 GT CO₂e from avoided deforestation. Technological solutions for sustainable intensification of pastures include changing from continuous to rotational, adopting mixed grass-legume pastures, and using silvopastoral systems that integrate trees and different agroecosystems.

(ii) Agroforestry offers another option to regenerate unproductive lands and maintain production on already deforested lands, and is particularly well-suited to smallholder farms. Agroforestry systems integrate trees and crops on the same piece of land, and can sequester carbon in soils and vegetation as a co-benefit. Agroforestry contributes to
more than one-third of the restoration efforts identified in the Brazilian Amazon, includes many native species, and will provide benefits beyond the area being planted, such as improving the permeability of the landscape for forest biota or mediating landscape temperatures.

(iii) Improving farm-fallow systems has vast potential for sustainable economic restoration in the Amazon, as shifting cultivation is a pillar of traditional farming systems and common across the basin. Management options in farm-fallow systems include reducing fire-use by adopting techniques such as chop-and-mulch, shortening the cropping periods, and increasing the fallow period to restore soil and agricultural productivity. Extended fallow periods have additional benefits, as they can help protect biodiversity, facilitate connectivity, and improve ecosystem services such as hydrological functions.

Whichever approach is adopted or encouraged, it is important that the restoration of economic production enhances biological complexity and diversity instead of promoting uniformity and specialization as a way to control nature and maximize profit. Approaches should recognize context specificities and use locally-adapted technologies, innovation, and transformation pathways to address the multiple functions of agriculture, forests, and rural activities. Restoration of agricultural land in the Amazon requires ample farming design investment, using tools for mapping land suitability, and communal land-use plans. Despite advances in knowledge and policies, sustainable and socially-just economic activities have yet to overcome barriers to large-scale adoption.

Aquatic restoration options

Restoration after pollution Pollutants that degrade ecosystems can come from many sources and become widely dispersed across landscapes and riverscapes. While controlling point sources of pollution is technically feasible, economics, poor governance, and lack of appropriate policies pose a challenge. Addressing non-point sources adds further complexities, and in many cases requires integrating restoration across vast areas including terrestrial and aquatic habitats. In contrast to remediation of point source pollution, restoring waterways degraded by non-point sources is considerably more difficult, and in many cases requires the restoration of vast areas of terrestrial habitats.

Pollution sources in Amazonian water bodies include industry, agriculture, sewage, mercury and other heavy metals from mining, and oil spills. Pollution from oil extraction and mining has received considerable attention because it is widespread, can be particularly damaging to ecosystems and difficult to clean, and affects many people who rely directly on river water for drinking and bathing, and on fish for food. In terms of directly restoring water, use of slacked lime to remove suspended particles appears to be an efficient and non-onerous process for gold miners to avoid Hg methylation in tailings ponds when it is combined with rapid drainage of the mine waters.

Plastic increasingly affects Amazonian aquatic ecosystems, food chains, and human health. The Amazon is now among the world’s most plastic-contaminated rivers. Large amounts of microplastics have been detected in river sediments around the city of Manaus. Especially high concentrations of microplastics were found in slower-flowing parts of rivers where sediments are deposited, such as in shallow parts of the lower Rio Negro. Mitigating plastic pollution is an enormous global challenge; yet, some Amazonian nations, including Colombia, Ecuador, and Peru, are beginning to develop rules governing the use and disposal of plastics and Peru has legislated a progressive phase-out of single-use plastic bags.

Dam removal and restoring natural flow cycles and connectivity In South America, attempts to minimize the impacts of hydroelectric dams on river connectivity are mostly ineffective. Dam removal is one alternative, and can reverse some of the environmental effects of dams. Justifying dam removal depends on the context in which the dam...
Science Panel for the Amazon

Chapter 28 in Brief: Restoration options for the Amazon

was built66, and various frameworks for prioritiz-
ing removal have been proposed in recent years67,68. These usually involve comparing the amount of power produced against a variety of en-
vironmental objectives (e.g., connectivity). One ex-
ample of a dam that would qualify as a priority for
removal is the Hydroelectric Power Plant of Bal-
bina (Brazil). Balbina supplies only 10\% of the en-
ergy consumed by Manaus (a metropolis with 1.8
million habitants), but created a more than 2,300
km\(^2\) reservoir and contributed to the displacement
and massacre of the Waimiri Atroari Indigenous
peoples69. Additionally, removing a fraction of the
many small dams in basins such as the Xingu could
restore connectivity, improve water quality, and
benefit biodiversity, without incurring large soci-
etal costs (e.g., reducing water availability).

Restoring fisheries and curbing overfishing Fish provide
millions of people in the Amazon, from Indigenous
peoples to urban populations, with their primary
source of protein, omega-3s, and other essential
nutrients70,71. Restoring fisheries involves, in part,
addressing overfishing through the development
and enforcement of sustainable fishing practices
and regulations, including trait-based regulations,
restoring and protecting critical habitats, and
improved monitoring. Enforcement over an area as
tensive and complex as the Amazon is both diffi-
cult and expensive. Co-management schemes
based on shared property rights can be particularly
effective, especially if the responsibility for man-
agement rests with local users and governments.
Co-management can also strengthen local organi-
izations, enhance relations among stakeholders,
create mechanisms for restricting access (i.e., de-
fining boundaries), create incentives (e.g., market-
ing strategies), and improve rule enforcement72.

Restoring floodplains Floodplains are threatened by a
combination of stressors, including loss of hydro-
logical connectivity and habitat, both of which have
cascading effects on biota and negatively impact
local and regional fish production and diversity73. Restoring floodplains requires reinstating natural
flood regimes and connecting floodplains with
other critical habitats. Floodplain restoration pro-
grams can be achieved through collaborative part-
nerships and stakeholder involvement74. Success-
ful programs address problems with cattle grazing
regulations and engage fishing communities as
key beneficiaries of restored habitats.

Indicators of success There are a broad range of
potential indicators of success75,76, which vary
greatly in their ease and scalability. For example,
open-source platforms such as Mapbiomas allow
year-on-year changes in forest cover to be assessed
across the Amazon with reasonable accuracy.
However, property-level or landscape- and
catchment-specific changes will likely require
more tailored assessments and high-resolution
imagery77. A more comprehensive understanding
of restoration success will require ground-based
assessments to evaluate the provision of
ecosystem services, terrestrial and aquatic
biodiversity, and socio-economic values78. These
indicators are much harder to collect at scale, and
they must be defined in a participatory way with
local stakeholders to ensure they are cost effective,
realistic given the expertise and resources
available, and sustainable over time79. New
technology such as the mobile app Ictio, which is
designed to collect standardized information on
fisheries from individual users at scale, is one
potential solution. Additional, practical tools using
simple criteria should be developed for assessing
mandatory restoration projects in the context of
public policies80. Finally, there is a need to learn
from monitoring and evaluation; information
needs to be pooled, analyzed, and used to evaluate
restoration effectiveness. These analyses can also
contribute to modeling exercises that explore
different restoration scenarios over time, allowing
stakeholders to take the most cost-effective and
beneficial decisions and select the restoration
programs that best fit their objectives.

Conclusions There are many opportunities for
restoration that are relevant and technically feasible in
diverse Amazonian contexts. Many restoration
approaches are expensive and therefore face significant challenges with spatial
and temporal scalability. Active restoration and remediation are particularly challenging to implement effectively and scale up, but remain essential in situations where passive approaches are ineffective. Finally, restoration should only ever be seen as a last resort. For vast areas of the Amazon, the primary aim should be to avoid the need for future restoration by conserving intact forests and waterbodies.

References
32. Zu Ermgassen, E. K. H. J. et al. Results from on-the-ground efforts to promote sustainable cattle ranching in the

Chapter 2 in Brief: Restoration options for the Amazon

