Science Panel for the Amazon (SPA)

Working Group 7

drivers and impacts of changes in terrestrial and freshwater systems (land use dynamics and impacts on ecological processes, ecosystem services, and human well being)

Lead Armenteras Dolors and Berenguer Erika

DRIVERS AND IMPACTS OF CHANGES IN AQUATIC

Lead Authors of Chapter: Philip M. Fearnside

Contributing Authors: Vera Maria Fonseca de Almeida-Val, Dolors Armenteras, Erika Berenguer, Paulette Byone, Fabrice Duponchelle, Roosevelt García-Villacorta, Federico Mosquera Guerra, Clinton N. Jenkins, Marcia Macedo, Adalberto Luis Val
Chapter 20

DRIVERS AND IMPACTS OF CHANGES IN AQUATIC ECOSYSTEMS

Philip M. Fearnside1, Dolors Armenteras2, Erika Berenguer1, Fabrice Duponchelle1, Federico Mosquera Guerra4, Clinton N. Jenkins5, Paulette Bynoe6, Roosevelt García-Villacorta7, Adalberto Luis Val1, Vera Maria Fonseca de Almeida-Val1

1 Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Brazil, pmfearn@inpa.gov.br
2 Ecología del Paisaje y Modelación de Ecosistemas ECOLMOD, Departamento de Biología, Facultad de Ciencias, Universidad Nacional de Colombia Sede Bogotá, Colombia
3 Environmental Change Institute, School of Geography and the Environment, University of Oxford, OX1 3QY, Oxford, UK; Lancaster Environment Centre, Lancaster University, LA1 4YQ, Lancaster, UK.
4 Institut de Recherche pour le Développement, France
5 Fundación Omacha, Colombia
6 Florida International University, USA
7 University of Guyana, Guyana
8 Centro Peruano para la Biodiversidad y Conservación (CPBC) Iquitos Perú

1 Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Brazil, pmfearn@inpa.gov.br
2 Ecología del Paisaje y Modelación de Ecosistemas ECOLMOD, Departamento de Biología, Facultad de Ciencias, Universidad Nacional de Colombia Sede Bogotá, Colombia
3 Environmental Change Institute, School of Geography and the Environment, University of Oxford, OX1 3QY, Oxford, UK; Lancaster Environment Centre, Lancaster University, LA1 4YQ, Lancaster, UK.
4 Institut de Recherche pour le Développement, France
5 Fundación Omacha, Colombia
6 Florida International University, USA
7 University of Guyana, Guyana
8 Centro Peruano para la Biodiversidad y Conservación (CPBC) Iquitos Perú
Chapter 20

INDEX

KEY MESSAGES .. i
ABSTRACT ... ii
GRAPHICAL ABSTRACT ... iv

1. INTRODUCTION .. 1

2. INFRASTRUCTURE .. 4
 2.1. Dams ... 4
 2.1.1. Existing dams and future plans ... 4
 2.1.2. Fish communities ... 6
 2.1.3. Aquatic mammals, reptiles, amphibians and insects .. 7
 2.1.4. Reservoir stratification ... 9
 2.1.5. Alteration of sediment flows ... 12
 2.1.6. Alteration of streamflows ... 13
 2.2. Roads .. 15
 2.3. Navigational waterways and river diversions .. 16

3. OVERHARVESTING ... 19
 3.1. Fish harvested for human consumption .. 19
 3.2 Ornamental fish ... 21

4. INVASIVE SPECIES ... 23

5. DEFORESTATION .. 25

6. POLLUTION .. 27
 6.1. Agricultural chemicals ... 27
 6.2. Oil spills and toxic waste ... 28
 6.3. Mining .. 31
 6.4. Urban sewage and Plastic waste .. 37

7. INTERACTIONS AMONG DRIVERS ... 38

8. CONCLUSION ... 41

10. RECOMMENDATIONS .. 41

11. REFERENCES ... 44

BOX 1: .. 1
Chapter 20

KEY MESSAGES

- Over the last four decades, and especially over the last two, many Amazon aquatic ecosystems have become less connected and more polluted.
- Prior to the massive impacts of dams built over the past four decades, overexploitation of plant and animal species was the most significant factor causing aquatic ecosystem degradation in the Amazon basin. This degradation continues to advance.
- The distribution of impacts on biodiversity and ecological processes is uneven.
- Agricultural, industrial and sewage waste contaminate Amazon waters.
- Mercury contamination from gold mining (legal or not) is a major environmental and public-health concern.
- Hydroelectric dams block fish migrations and the transport of sediments and associated nutrients, as well as altering river flows and oxygen levels.
- Deforestation greatly affects the physical and chemical characteristics of watercourses and the agriculture that replaces forest can release fertilizers, herbicides and other pollutants into the water, as well as sediments from soil erosion.
- Petroleum extraction and resulting oil spills can have catastrophic impacts on aquatic ecosystems.
- Biological productivity of aquatic ecosystems is affected both downstream and upstream of these impacts.
Chapter 20

ABSTRACT

Amazon aquatic ecosystems are being destroyed and the threats to their integrity are projected to grow in number and intensity. Hydroelectric dams (n=307 existing or under construction) have changed almost every aspect of Amazon aquatic ecosystems, and many more dams are planned (n=239), posing threats to the region’s enormous aquatic biodiversity and fisheries resources. By blocking fish migrations dams affect important commercial species, as well as the flow of sediments and nutrients that sustain aquatic food chains and support fish populations. By altering stream flows and flooding regimes, dams and their reservoirs also disrupt downstream ecosystems, including flooded forests and the floodplain lakes that are essential for breeding of many fish species. The low-oxygen (anoxic) conditions found near reservoir bottoms cannot be tolerated by many fish species. They also favor the formation of highly toxic methyl-mercury and the production of methane, a powerful greenhouse gas. Small dams and reservoirs can also have substantial impacts that are often even greater than large dams on a per-Megawatt (MW) or per-hectare basis. In Brazil the definition of “small” dams has progressively increased from less than 10 to 30 to 50 MW, opening an expanding loophole in the environmental licensing system. Overharvesting of fish for both food and the ornamental trade has depleted fish stocks and altered their ecological roles. Native species are threatened by invasive species that escape from aquaculture operations and potentially from proposed inter-basin river diversions. Deforestation changes chemical and physical properties of streams, including releasing natural deposits of heavy metals such as mercury from erosion, and eliminating aquatic species that inhabit watercourses in Amazon forest. Pollution sources include toxins from agriculture and industrial and urban waste, such as plastic, mercury, transition metals like Cu, Cd, Pb, Ni, etc., urban sewage, and various forms of toxic waste. Oil spills have had disastrous consequences in Ecuador Peru. Oil and Gas extraction, transportation and distribution from the forest to the capital in Amazonas state, Brazil, have induced small oil and asphalt spills locally damaging aquatic life in the surrounding areas and bringing a heavy threat for the whole region. Gold mining releases large amounts of sediments, in addition to releasing mercury and provoking the clearing and degradation of floodplain forests. Roads contribute to the fragmentation of streams and river tributaries as well as generate sediments through soil erosion, in addition to the sediment from the deforestation that roads provoke. Navigational waterways cause multiple impacts on the
Chapter 20

rivers converted to this use, particularly affecting the reproduction habitats of freshwater species. Climate change impacts aquatic ecosystems through increased temperature and through extreme droughts and floods. Interactions among drivers mean many of these impacts are even more harmful to aquatic ecosystems. The authors of this chapter recommend that no more hydroelectric dams with installed capacity ≥ 10 MW should be built in Amazonia, that investments in new electricity generation should be redirected to wind and solar sources, and that all environmental assessments should incorporate synergistic and cumulative impacts in their analyses.

Keywords: Dams; Waterways; Fish; Oil spills; Toxic waste; Mercury; Climate change; River diversion; Invasive species; Pollution
Chapter 20

GRAPHICAL ABSTRACT
Chapter 20

1. INTRODUCTION

Amazonia’s rivers and streams reflect the landscapes through which they flow. The great Amazon limnologist Harald Sioli (1984) explained that, “The big rivers receive their waters from a dense network of Igarapés, streams and brooklets. The total length of their courses exceeds more than a thousand times that of the Amazon; this implies an intimate contact of the Amazon aquatic system with its terrestrial surroundings and a determining influence of the latter on the chemistry and biology of the small watercourses.” This influence reflects not only geological differences such as those that produce the region’s white-, black- and clear-water rivers, but also the effects of human activity. These watercourses are often compared to a person’s blood or urine -- the usual focus of medical testing to identify problems in a human body. In the same way, the deteriorating health of a terrestrial or aquatic ecosystem will be reflected in the quality and quantity of the water flowing from its hydrographic basin.

The sheer magnitude of the flows in Amazonia reflects the region’s global significance, annually discharging 6.6 trillion cubic meters of fresh water to the oceans, along with 600-800 million tons of suspended sediments (Filizola & Guyot, 2011). The Amazon’s aquatic biodiversity is also globally significant. So far, 2406 fish species have been described (Jézéquel et al., 2020), although hundreds more are to be described such that the actual number is likely to be above 3000 species (Val, 2019). Described floodplain tree species total 918 (Wittmann et al., 2006). As mighty as the Amazon River is, its aquatic ecosystems are also fragile (e.g., Castello et al., 2013a). The multiple threats facing these ecosystems are the focus of this chapter.

Amazon rivers and streams connect distant parts of the vast Amazon basin, and impacts originating at any given location may be felt thousands of kilometers away. A dam altering downstream sediment flows, for example, can affect ecosystems all the way to the Atlantic Ocean and even in the Amazon estuary. Likewise, a dam blocking migratory species causes upstream effects reaching all the way to the Amazon headwaters in the foothills of the Andes. The same is true for other drivers of change in freshwater systems (Figure 1): overharvesting of fish stocks (both of commercial and ornamental species) can disrupt aquatic food webs; introduction of invasive species can disturb native species communities, causing loss of habitats to the native species, and deforestation can alter water quality, temperature, and climate at various scales. Water
Chapter 20

pollution (e.g. agricultural and industrial wastes, plastics, medicines, oil spills and transition metals such as mercury) can have widespread and cumulative effects, as can infrastructure such as dams, roads, river diversions and waterways. Other factors include urban and industrial growth, agriculture and regional climate change. These drivers have synergistic interactions among themselves and, when acting together, can amplify each other’s impacts (Anderson et al. 2018; Athayde et al., 2019; Castello & Macedo, 2016; Costa et al., 2011; Silva et al., 2019). The construction of dams, for example, inevitably results in the construction of roads, which in turn may increase deforestation for pasture and commodity crops such as soy (Fearnside, 2014b; Guerrero et al., 2020). These land-use changes ultimately result in the pollution of rivers and streams, be it from the large-scale use of fertilizers and agricultural chemicals, the formation of toxic methylmercury in reservoirs, or rapid population growth spurred by dam construction. These multiple impacts on aquatic ecosystems threaten Amazonia’s enormous aquatic biodiversity, as well as the health and the well-being of many Amazon residents who depend on fisheries and other aquatic resources for their livelihoods.

Aquatic systems in Amazonia are environmentally diverse and include many characteristics that can pose unique challenges for aquatic organisms. Among these are habitat heterogeneity, different river types (such as those with white, black or clear water), and dramatic seasonal flood events (i.e., flood pulses) when rivers overflow their banks and invade adjacent forests, creating habitats such as várzeas (white-water floodplains) and igapós (black-water swamps) that are essential for feeding and nurturing fish (Barletta et al., 2010). Water-quality indicators, such as dissolved oxygen, temperature, electrical conductivity and pH, may also vary seasonally and spatially depending on the drainage area (e.g., the Andes, Guiana, and Brazilian shields), requiring aquatic organisms to adjust. These challenges have favored the evolution of adaptive strategies at all levels of biological organization (Campos et al., 2019; Junk et al., 1989; Piedade et al., 2000; Val, 2019). Fish and other aquatic animals have evolved strategies to cope with extreme environments (e.g., water with low oxygen, high acidity, low ion concentrations, and high temperatures) and high seasonal variability in food resources, resulting in high biotic diversity (Val & Almeida-Val, 1995; Val et al., 2006; Zuanon et al., 2005).
The interactions between extreme habitat conditions and anthropogenic disturbance are driving many organisms to their physiological limits - adaptations to their natural environment do not always promote survival under anthropogenic stresses. An emblematic example is the effect of oil spills on fish. Among the many strategies to cope with environmental hypoxia, fish in the Amazon have developed adaptations to exploit the water-air interface that, in the case of an oil spill, plays against the animals by increasing their contact with the pollutants concentrated at the top of the water column (Anjos et al., 2011; Val & de Almeida-Val, 1999; Souza et al., 2020).

The interactions among the different drivers of degradation in aquatic systems are summarized in Figure 1. This chapter begins with a discussion of hydroelectric dams because of their very large and diverse impacts in the region, and the many connections between dams and other drivers of change in aquatic ecosystems. It then reviews the effects of overharvesting, invasive species, pollution, mining, roads, river diversions, waterways, and climate change on Amazon aquatic systems. The chapter concludes with a discussion of synergistic effects among drivers, followed by conclusions, key messages, and recommendations.

Figure 1. Flowchart of relationships among drivers leading to impacts on aquatic life.
Chapter 20

2. INFRASTRUCTURE

2.1. Dams

2.1.1. Existing dams and future plans

Finer and Jenkins (2012) identified 48 existing dams and 151 planned dams with at least 2 MW installed capacity in the western portion of the Amazon basin. Lees et al. (2016) later counted 191 completed dams and an additional 246 that were planned or under construction in the Amazon Basin as a whole. Almeida et al. (2019) identified 158 dams with at least 1 MW installed capacity in the Basin, either in operation or under construction, and 351 proposed dams. The SPA maps team identified 307 dams that exist or are under construction and 239 that are planned or projected (Figure 2). These numbers vary widely due to differences in the areas covered, inconsistent definitions of what constitutes a “planned” dam (especially for small dams), and variable information across the nine countries comprising the Amazon Basin. The plans for future hydroelectric dams are also continually in flux.
Figure 2. Existing and planned hydroelectric dams in Amazonia. Existing or under construction = 307; Planned or projected = 239; Total= 546.

“Small” dams have less hydrological impact than large dams in absolute terms, but relative to their installed capacity for energy generation they have a significantly greater impact (Timpe & Kaplan, 2017). Since 2016 “small” hydroelectric dams have been defined in Brazil as those with less than 50 MW of installed capacity; the limit was 30 MW from 2004 to 2016, and it was 10 MW before 2004. Dams in this category are exempt from federal environmental licensing and can be built with (generally less-rigorous) state licensing, thus motivating both the expansion of this loophole by
redefining “small” dams and a rapidly increasing number of “small” dams in Brazilian Amazonia. The definition of “small” dams varies widely among countries, with 10 MW being “increasingly recognized as the international standard” (Couto & Olden, 2018). Brazil’s relaxing its definition to include dams up to 50 MW represents a significant setback in environmental control.

2.1.2. Fish communities

Hydroelectric dams negatively impact fish communities both above and below the reservoir due to habitat loss and severe changes in the hydrological regimes of flooded forests (Ribeiro & Petrere, 1988; Ribeiro et al., 1995; Santos et al., 2018). The conversion of a stretch of river from a running water (lotic) to a still water (lentic) one eliminates or greatly reduces many species, few of which are adapted to the new environment (Agostinho et al., 2016). Fish communities become structurally and functionally different from the pre-dam baseline (Araujo et al., 2013; Arantes et al., 2019a,b), with one of the most evident impacts being the impediment of both upstream and downstream migration (Pelicice et al., 2015a). Only some of the highly diverse migratory fish species are able to use fish passages (Pelicice & Agostinho, 2008). The famous “giant catfish” of the Madeira River (Brachyplatystoma spp.) are among those that have not been able to use the passages in the large Santo Antônio and Jirau Dams, although they are physically able to climb the passages if placed inside them (Figure 4). This is because the instinct of the fish during their annual migration to spawn in the headwaters is to swim up the main channel of the river, not to enter small streams like the ones imitated by the passages. Although not yet documented for the Amazon, basin-wide extirpations of migratory species have occurred in many rivers of the world due to ineffective fish ladders (see Freeman et al., 2003; Pringle et al., 2000). Amazon dams and their ineffective fish passes have already seriously disrupted the migration routes of many fish species, resulted in declining fisheries both above and below the dams and in changes in assemblage structure and functional traits of fish communities (review in Duponchelle et al., 2021). Ineffective fish ladders in Amazonia have caused declines of migratory species at the Santo Antônio Dam on the Madeira River in Rondônia (Hauser et al., 2019) and the Lajeado Dam on the Tocantins River in the state of Tocantins (Agostinho et al., 2007, 2012). In other cases no fish passage was provided, as at the Coaracy Nunes Dam on the Araguari River in Amapá (Sá-Oliveira et al., 2015a), the Samuel Dam on the Jamari River in Rondônia (dos Santos, 1995) and the Tucuruí Dam
Chapter 20

on the Tocantins River in Pará (Ribeiro et al., 1995). The resulting loss of fisheries has severe social impacts (Chapter 13).

Figure 4. The various species of “giant catfish” in the Madeira River are already heavily impacted by the Santo Antônio and Jirau Dams that have blocked their annual spawning migration since 2011. Source: Kileen (2007). Photograph: Russell Mittermeier - Conservation International.

2.1.3. Aquatic mammals, reptiles, amphibians and insects

Many other aquatic taxa are affected by hydroelectric dams (Lees et al., 2016). For example, dams can cause the fragmentation of populations of dolphins, amphibians and reptiles (especially larger ones such as caimans and turtles). Dams can also affect these animals indirectly – e.g., they can decrease prey availability for dolphins (Araújo & Wang, 2015; Salisbury, 2015). Population fragmentation by dams disrupts gene flow and can result in small and therefore vulnerable populations (Gravena et al., 2014; Paschoalini et al., 2020). Dolphin populations also face multiple other threats throughout the Amazon basin (Trujillo et al., 2010).

The beaches on which turtles often lay their eggs are commonly flooded by dam-altered hydrology (Alho, 2011). This occurs not only in the reservoir area itself (Norris et al., 2018) but also in downstream areas where water levels vary depending on power generation (Salisbury, 2016). A number of planned dams are particularly threatening to turtles (Gonzales, 2019). For instance, on the Rio Branco in Roraima the planned Bem Querer Dam (Fearnside, 2020a) is likely to impact downstream turtle breeding beaches (e.g., do Nascimento, 2002). On the Trombetas River in Pará, the dam that is planned to
be the centerpiece of the Barão do Rio Branco Project announced by Brazil’s current presidential administration (The Intercept, 2019) would be just upstream of one of Amazonia’s largest turtle-breeding beaches, the “tabuleiro do Jacaré” (e.g., Forero-Medina et al., 2019; Zwink & Young, 1990).

In a study of frogs at the Santo Antônio Dam on the Madeira River, the composition of species assemblages present near the natural river margin before reservoir flooding did not re-establish on the new margin up to four years after the reservoir was filled (Dayrell et al., 2021). Frog species richness near the new margins increased by 82% one year after filling, but this percentage had declined to 65% by four years after filling and showed “no tendency to return to the original assemblage.”

Dam impacts on aquatic insects vary – species that depend on fast-moving water have their habitats reduced by the creation of reservoirs and thus decrease in abundance; while others that breed in the standing water of a reservoir, such as mosquitoes, can undergo population explosions. At the Tucurú Dam, in Brazil’s Pará state, up to 39% of the reservoir was covered by macrophytes (aquatic plants) in the first years after impoundment (Tavares de Lima et al., 2000) providing breeding sites for mosquitoes in the genus Mansonia (Fearnside, 2001). The resulting “mosquito plague” caused many of the people who had been resettled near the reservoir to abandon their lots and initiate a new hotspot of deforestation elsewhere (Fearnside, 1999). Conversely, Anopheles mosquitoes (the vectors of malaria) diminished in abundance after completion of the Tucurú Dam (Tadei et al., 1991). At the Samuel Dam (in Brazil’s state of Rondônia) Culex mosquitoes exploded dramatically and Anopheles mosquitoes, which were already abundant before construction of the dam, are also believed to have increased (Fearnside, 2005). (See Chapter 19 on health).

Alteration of flows downstream of dams can also impact aquatic insects drifting in the water (Castro et al., 2013; Patterson & Smokorowski, 2011) and those that inhabit the edges of the river, such as mayflies (Ephemeroptera) (Kennedy et al., 2016). Changes in substrate composition (i.e., from coarse to fine substrates) downstream of dams is also known to negatively affect aquatic insects (Wang et al., 2020).
2.1.4. Reservoir stratification

Reservoirs commonly stratify into layers with colder water at the bottom and a division (thermocline) at 2-10 m depth separating the warmer and colder layers. Water does not mix between the two layers. Oxidation of organic material at the bottom consumes oxygen to produce CO$_2$, until oxygen is no longer available, after which decomposition must end in methane (CH$_4$). Stratification is essentially universal in storage dams such as Tucurui on the Tocantins River (Figure 2). In run-of-river dams stratification will depend on the velocity with which the water moves through the reservoir. In run-of-river dams where the main channel remains free of stratification, as at the Santo Antônio Dam on the Madeira River, bays and flooded tributaries can still stratify (Fearnside, 2015a). Box 1 explains the contribution of Amazon dams to greenhouse-gas emissions.

Figure 2. Reservoir stratification in the Tucurui reservoir. In the bottom water (hypolimnion) oxygen is depleted and methane (CH$_4$) levels increase with depth, reaching high levels at the levels of the spillways and turbine intakes. Source: Fearnside & Pueyo (2012).
Chapter 20

Underwater biomass decomposition leads to the emission of both CO$_2$ and methane (CH$_4$). One ton of methane has an impact on blocking the passage of infrared radiation that is 120 times that of a ton of CO$_2$ while it remains in the atmosphere (Myhre et al., 2013, p. 712). If we are to stay within either of the Paris Agreement’s limits (mean global temperature “well below 2°C” or below 1.5°C above the preindustrial mean), then the impact of CH$_4$ in terms of CO$_2$-equivalents must be considered on a 20-year basis, which essentially triples the impact of hydroelectric dams on global warming (Fearnside, 2015b, 2017b). The impacts of different greenhouse gases are expressed in terms of CO$_2$ equivalents based on global-warming potentials (GWPs), which represent the effect on global temperature over given time horizon from emitting one ton of the gas relative to the simultaneous emission of one ton of CO$_2$. Considering the 20-year GWPs from the IPCC’s 5th Assessment Report, 25% of the lowland dams would emit even more CO$_2$ equivalents per megawatt-hour generated than a coal-fired power plant, and 40% of them would emit more than generation from natural gas (Almeida et al., 2019). The result would be even worse for Amazon dams if emissions from the water passing through the turbines and spillways were included in these calculations.

Considerable uncertainty exists in calculating greenhouse-gas emissions (i.e. CO$_2$, CH$_4$ and N$_2$O) from dams on the scale of Amazonia as a whole. There is much variation from dam to dam with reference to key variables such as the depth of water at the intakes of the turbines and spillways, the average turnover time of water in the reservoir, and the existence of bays and other areas in the reservoir where turnover times are much longer than the average (Fearnside, 2013b, 2015a). For example, run-of-river dams emit less than storage ones because they have smaller reservoirs with faster water turnover times and less variation in the water level. However, run-of-river dams can still emit methane even if the water flow is sufficient to prevent stratification in the main channel of the river because the tributaries and bays stratify and methane produced in them reaches the spillways and turbines to be emitted downstream (Fearnside, 2015a; see also Bertassoli Jr. et al., 2021). Another key aspect in the variation in dam-related emissions is dam location -- lowland dams (elevation < 500 m above mean sea level) produce more than triple the emissions per megawatt-hour generated than dams at higher elevations (Almeida et al., 2019). Similarly, tropical dams have higher emissions than those at higher latitudes (Barros et al., 2011). Because a substantial amount of information is needed about each dam in order to estimate greenhouse-gas emissions, it is difficult to
Chapter 20

make valid regional, national or global estimates. Simple extrapolation based on
installed capacity, which has been done in various global estimates, is insufficient.

Emissions resulting from the reservoir surface tend to be the only ones considered when
evaluating the impacts of dams on climate change, which highly underestimates total
dam emissions (e.g., Brazil, MCT, 2004). Reservoir surfaces can emit gases both by
diffusion and by bubbling (ebullition). Diffusion is a large source in the first two years
after reservoir filling, but subsequently declines in importance (Dumestre et al., 1999).
Bubbling is greater in shallow parts of the reservoir, and it occurs at irregular intervals,
with short periods of intense bubbling interspersed with long periods with few bubbles
(de Lima, 2002). The treatment of these effects in calculating annual emissions from a
reservoir can have dramatic effects on the calculated (Fearnside & Pueyo, 2012; Pueyo
& Fearnside, 2011). Emissions from turbines and spillways (“downstream emissions”) are critical, even if they are often neglected (see Fearnside, 2013b,c, 2015a).
Downstream emissions, which are largely proportional to water flow, are generally
greater than those from the reservoir surface, which are proportional to reservoir area.
This is the case of the Petit Saut Dam in French Guiana, which has much more data on
emissions than any other Amazon dam (Abril et al., 2005; Delmas et al., 2001). In
Balbina, which has a large reservoir and little water flow, the surface emissions are
slightly larger than the downstream emission, whereas in Tucurúi, which has
approximately the same reservoir area as Balbina but much more water flow, the
downstream emission predominates (Fearnside, 2002a; Kemenes et al., 2007, 2011,
2016).
In the first years after impoundment there is normally an explosion of floating and
rooted aquatic plants (macrophytes) due to a flush of nutrients in the water when the soil
and litter are first flooded and from the leaves dropped by dying trees. The macrophytes
add to the oxygen depletion provoked by decay of the flooded vegetation. The
macrophyte cover subsequently declines to lower levels, as occurred at Tucurúi and
Balbina (Fearnside, 1989, 2001). Lower oxygen content in a reservoir as compared to
the running water of the natural river is one of the changes that cause populations of
most of the original fish species to either disappear or be reduced to minimal levels,
being replaced by a different and less-diverse assembly of species (Sá-Oliveira et al.,
2015a,b).
The turbine and spillway intakes of dams are often located below the thermocline. As such, low oxygen content in the water released from dams can have dramatic impacts on the fish downstream, leading to higher mortality (Fearnside, 2001, 2019a). Below the Tucuruí Dam this affected the entire lower Tocantins River (~200 km) for over two decades, with no indication that the effect is not permanent (Cintra, 2009).

2.1.5. Alteration of sediment flows

Dams reduce sediment flows by retaining sediments in the reservoirs (Fearnside, 2013a). Downstream of the dam the reduced sediment load results in scouring, where erosion of the riverbanks and bottom accelerates (Almeida et al., 2020; Santos et al., 2020). Reduction in sediment flow deprives the downstream river of the nutrients associated with sediment particles. In the Madeira River, sediment transport downstream of the Santo Antônio and Jirau Dams (in Rondônia) decreased by 20% compared to pre-dam quantities (Latrubesse et al., 2017), which may have contributed to the observed sharp decline in fish catches downstream of the dams (Lima et al., 2017; Santos et al., 2020). Because suspended particulate organic matter and aquatic macrophytes are at the base of the food chain that supports most of the fish species in the lower Amazon (Arantes et al., 2019c), reduction of sediment loads by Andean dams are likely to have far-reaching consequences for aquatic food webs by reducing nutrient supplies and thereby affecting primary production along the entire length of the Madeira and Amazon Rivers (Forsberg et al., 2017). Along with reduced oxygen, reduced nutrient flows may have contributed to the collapse of fish and freshwater shrimp populations below the Tucuruí Dam (Odinetz-Collart, 1987), an impact from which these populations have never recovered (Cintra, 2009).

Reducing sediment flows also impacts aquatic biota by modifying river geomorphology. Andean tributaries provide over 90% of the sediment budget of lowland rivers in the Amazon basin (Filizola & Guyot, 2009), playing critical roles in geomorphological processes such as river meandering and floodplain formation (Dunne et al., 1998; Meade, 2007; McClain & Naiman, 2008; Constantine et al., 2014). Interfering with these processes disrupts the lateral connectivity between river channels and floodplains and ultimately reduces fish yields (Forsberg et al., 2017; Almeida et al., 2020). These modifications alter lateral connectivity between river channels and floodplains, and hence the fishes’ seasonal use of floodplains, which have essential nursery and feeding
roles (Bayley, 1995; Nilsson & Berggren, 2000; Castello et al., 2015, 2019; Hurd et al., 2016; Bayley et al., 2018).

Impacts from reduction of sediment flows are especially problematic in whitewater rivers. In some cases, the process of dam construction can have the opposite effect of temporarily increasing sediment loads in clearwater and blackwater rivers, which is also damaging. In either case, dam-induced downstream modifications affect fishes’ longitudinal upriver spawning migrations (Agostinho et al., 2004, 2008; Lytle & Poff, 2004; Bailly et al., 2008). These migrations are affected by modifying the physical and chemical cues to which fish have adapted (Carvalho Freitas et al., 2012; McIntyre et al., 2016; Timpe & Kaplan, 2017). This impact is in addition to the catastrophic effect of physical blockage of migration routes by the dams.

2.1.6. Alteration of streamflows

Storage dams can cause downstream flow changes over longer periods than run-of-river dams, but the large variation in daily or hourly time scales for run-of-river dams can also provoke significant changes in streamflows (Almeida et al., 2020). Alteration of flow patterns in the river below a dam has multiple effects on downstream ecosystems. Timpe and Kaplan (2017) related ecological impacts to hydrological measures within four groups of hydrological parameters: 1) frequency and 2) duration of high and low pulses (flood pulses), 3) the rate and 4) frequency of water condition (level) changes. Other impacts on streamflow occur when the reservoir is filling, such that downstream river stretches dry out during all or part of the filling period. The Balbina Dam (in Brazil’s state of Amazonas) was an extreme case, with flow stopped for over a year (Fearnside, 1989). The Belo Monte Dam produces a similar effect that is permanent and on a grand scale: water flow is greatly reduced in a 130-km stretch known as the “big bend of the Xingu River” (Volta Grande do Rio Xingu), with 80% of the river’s annual flow being diverted (Figure 4).
Figure 4. The Belo Monte hydroelectric project has diverted water from the “Volta Grande” (big bend) of the Xingu River, a 130-km stretch between the two dams that comprise the project. Source: Watts (2019). Photograph: Fábio Erdos/The Guardian.

https://i.guim.co.uk/img/media/ce436146490a1aa94e9a1acb1e05c10f620c2ade8/0_217_5464_3279/master/5464.jpg?width=620&quabit=85&auto=format&fit=max&s=abe905496bc86b1ce8d9181b769c2a34

Modifications in the hydrological regime directly impact aquatic biodiversity. Fish behavior, especially as related to migration and reproduction, is attuned to flow changes, and false signals caused by dams can induce fish to behave in ways that jeopardize their reproductive success (Agostinho et al., 2004; Bailly et al., 2008; Carvalho Freitas et al., 2012; McIntyre et al., 2016; Nunes et al., 2015; Vasconcelos et al., 2014). Reduction in water flow also negatively affects ornamental species, such as the zebra pleco (*Hypancistrus zebra*), which is threatened with extinction in the wild due to the Belo Monte Dam (Gonçalves, 2011). In addition, alteration of flow and of river stages (height of the water level) can also affect turtle reproduction on river beaches, as is reported by Indigenous people for beaches below the Teles Pires and São Manoel Dams in the Tapajós basin.

Flooded forests are impacted by the construction of mega-dams by increasing tree mortality due to extreme flooding (Resende et al., 2019; Oliveira et al., 2021). In the Uatumã River below Brazil’s Balbina Dam, streamflow alterations resulted in the death of 12% of the swamp (*igapó*) forest along a 125-km stretch of river below the dam (Assahira et al., 2017; Schöngart et al., 2021). During years with high rainfall the water
level no longer reaches the minimum of the natural river, leaving trees in low
topographic positions underwater beyond their tolerance limits (Figure 5).

Figure 5. Igapó (black-water swamp forest) killed by alteration of water levels
downstream of the Balbina Dam. Photograph: Jochen Schöngart, INPA.

2.2. Roads

Amazon roads are often built without adequate passages for water, such as culverts or
bridges, which result in the fragmentation of small tributaries and seasonal streams.
Roads can act as dams, and their impact is especially strong for seasonal streams, with
roads causing ponding along the road, blocking the passage of aquatic life and
disrupting stream connectivity. On Brazil’s Highway BR-319 (Manaus-Porto Velho)
such blockages impede the seasonal migration of stream fishes (Stegmann et al., 2019).
Roads also influence water quality and sediment deposition in aquatic systems. A study
of 82 of the 242 points at which watercourses intersect BR-319 showed higher water
turbidity downstream, as compared to upstream, of the road crossings (Maia, 2012). A
road without accompanying deforestation in Brazil’s state of Amazonas resulted in
sediment from erosion of the roadbed and from dust raised by truck traffic that had
notable effects on the community of aquatic insects in nearby streams, reducing richness
and density in all functional groups, especially shredder species (Couceiro et al., 2011).
One factor contributing to this is the burial of fallen leaves under the sediments, making
these unavailable to insects in the shredder functional group (Couceiro et al., 2010).
This reduces an important input to the base of the trophic pyramid in the aquatic
ecosystem.
Chapter 20

2.3. Navigational waterways and river diversions

Navigational waterways (hidrovias) (Figure 6) have severe impacts on aquatic ecosystems. One is the dynamiting and removal of rocky habitats in order to allow barges to pass unimpeded. Many species of fish are endemic to these habitats and could go extinct when they are removed (e.g., Zuanon, 2015). The planned removal of the extensive rock outcrops of the Pedral do Lourenço upstream from Marabá on the Tocantins River would have these effects on a large scale (Higgins, 2020). In addition to removing rock outcrops, dredging of river channels to ensure yearlong navigability results in deepening shallow zones and removing woody debris (Castello et al., 2013a) that can hold rich, specific endemic fish fauna (Hrbek et al., 2018). Populations of these species are unlikely to recover once their specific habitat has been removed.

Figure 6. Planned waterways in Peruvian Amazonia. Source: Mariac et al. (2021).
Chapter 20

Chapter 20

Waterway plans associated with the Madeira River dams, including IIRSA plans for waterways in Bolivian Amazonia. Source: Fearnside (2014b). The waterway on the Madeira River from Porto Velho to Itacoatiara is already operational.

Figure 6. Existing and planned waterways in Amazonia.

In the Peruvian Amazon there is the recently contracted project for the ~2700-km Hidrovía Amazónica (Anderson et al., 2018; Bodmer et al., 2018). Recent field data on fluvial sediment movements and fish biodiversity in the Marañón and Ucayali Rivers, in the Peruvian Amazon suggest that the Hidrovía Amazónica project could significantly alter river-channel morphology and consequently impact the fish diversity and productivity on which local economies depend. Measurements of sediment transport in these rivers have shown that the filling time of the riverbed is very fast, with an average transport of 1.3 million tons of total sediments transported per day (CITA-UTEC, 2019, p. 17). Among the most critical impacts that the Hidrovía Amazónica would cause to the Peruvian Amazon’s fish biodiversity, habitats, and fishery resources are: (i) contamination of rivers due to fuel and oil spills from dredging vessels, (ii) disturbance of local and regional fish migrations, (iii) impact on fish spawning and refuge habitats, (iv) impact on the abundance of fish populations, (iv) mortality of fish eggs, larvae and juveniles, (v) disturbance of the natural floods along the river banks, and (vi) impacts on fish productivity (García-Villacorta, 2019). Other potential consequences are the degradation or destruction of breeding and feeding grounds, particularly for
detritivorous species, and increased mortality of migrating eggs and larvae through abrasion.

River diversion, which is a response to increasing demand for freshwater, causes multiple environmental impacts. The exchange of aquatic organisms native to different catchments can lead to biotic homogenization, constituting the greatest threat of river diversion to Amazon aquatic systems. This is likely to be the result of a planned connection of the Araguaia/Tocantins river system in Amazonia to the São Francisco river system in Northeastern Brazil (Daga et al., 2020).

3. OVERHARVESTING

3.1. Fish harvested for human consumption

The unsustainable exploitation of plant and animal species has long been a significant factor of aquatic ecosystem degradation in the Amazon basin (Castello et al., 2013a, see also Chapter 15). Most large, high-valued fish species, such as the giant pirarucu or paiche (Arapaima spp.), which is already on the CITES II list of endangered species (Castello & Stewart, 2010; Castello et al., 2015), the large fruit-eating tambaqui or gamitana, Colossoma macropomum (Isaac & Ruffino, 1996; Campos et al., 2015), and many of the largest catfishes (e.g., Isaac et al., 1998; Ruffino & Isaac, 1999; Petrere Jr. et al., 2004; Alonso & Pirker, 2005; Cordoba et al., 2013) are considered overfished in their natural distribution areas. In several places, local management programs are in place and fisheries are under systematic control, as is the case of participative management of Arapaima fishing in the Mamiraruá Sustainable Development Reserve in Brazil (IDSM, 2021) and the Pacaya-Samiria National Reserve in Peru (Kirkland et al., 2018).

Overfishing is no longer restricted to large, highly sought species but also affects several of the smaller Characiformes species that now dominate fish landings, such as Prochilodus nigricans (Catarino et al., 2014; Bonilla-Castillo et al., 2018), Psectrogaster spp. (García-Vasquez et al., 2015), Triportheus sp, Osteoglossum bicirrhosum, Mylossoma duriventre, among others (Fabré et al., 2017). This is particularly visible around large Amazon cities, such as Manaus and Iquitos, which can cast defaunation shadows of over a thousand kilometers, as evidenced for tambaqui (Garcia et al. 2008; Tregidgo et al., 2017). The progressive replacement in fisheries of
large, long-lived species by smaller species with faster turnover is a well-described phenomenon known as “fishing down” (Welcome, 1995, 1999), or “fishing down the food web” when an associated decline in trophic levels is observed in exploited species (Pauly et al., 1998).

Most commercial and overexploited fish species in the Amazon basin are migratory, traveling from a few hundred to several thousand kilometers (Barthem & Goulding, 2007; Goulding et al., 2019). Migratory species account for over 90% of fisheries landings in the Amazon basin, generating incomes of over USD 400 million (Duponchelle et al., 2021). Although the proportion of migratory species is slightly lower in the unmonitored subsistence fisheries, which represent at least as much volume as the landed commercial fisheries (Bayley, 1998; Crampton et al., 2004), they still dominate the catches (Batista et al., 1998; Castello et al., 2011; Castello et al., 2013b).

Migratory fishes are the species most at risk from the growing anthropogenic activities threatening Amazon aquatic ecosystems (review in Duponchelle et al., 2021).

Fish overharvesting could have indirect negative effects on terrestrial plant biodiversity and conservation because many commercial species have frugivorous diets and play key roles in dispersing seeds (ichthyochory) and in seed germination processes (review in Correa et al., 2015a). This is further aggravated by the fact that larger fish, which are the main targets for fisheries, are also the most effective seed-dispersal agents (Correa et al., 2015a,b; see also Chapters 3 and 4).

Modern aquaculture could contribute to the conservation of endangered species, which are overharvested. Most of the aquaculture farms around major Amazon cities have only recently begun operation, but focus on much-consumed species. Tambaqui is the native fish species most farmed in Brazil (Araújo-Lima & Goulding, 1998; Oliveira & Val, 2017). Pirarucu (Arapaima) and some other fish species, such as matrinchã (Brycon amazonicus), are also farmed. The major challenge to fish farming in the Amazon is feeding because local production of fish feed is limited. Other inputs, such as ice and rock salt, can also be difficult to obtain. The improvement of other conditions, such as transportation, would also contribute to the use of by-products (such as leather) from these fish species.
3.2 Ornamental fish

The aquarium fish trade is a growing, multi-billion US dollar, industry (Andrews, 1990; Stevens et al., 2017). Fish are one of the most popular animal pets in the world (Oliver, 2001), and the harvesting of wild specimens for the international ornamental trade is a major conservation issue (Andrews, 1990; Moreau & Coomes, 2007; Chao & Prang, 1997). The Amazon basin accounts for ~10% of the global trade of freshwater ornamental fish, with Brazil, Colombia and Peru as the major exporters: in 2007, the total declared (greatly underestimated) export value from these three countries was ~USD 17 million (Monticini, 2010). Although artificial breeding could be beneficial for the conservation of aquarium species (King, 2019), nearly all specimens exported from South America are directly extracted from the wild (Olivier, 2001). There is no up-to-date published estimate of the overall number of Amazon fish species exploited by the ornamental trade, but ~700 species are exported from Brazil (IBAMA, 2012), >100 from Colombia (Ortega-Lara et al., 2015) and >300 from Peru (Gerstner et al., 2006). Of course, these lists share many species, but widespread species may also hold cryptic diversity (e.g., Estivals et al., 2020). These figures are probably underestimated given that many different species can be exported under a single name (Moreau & Coomes, 2007). Therefore, a conservative estimate could consider that between 700 and 1000 species of fish are exploited by the ornamental trade in the Amazon basin.

One major impact of the ornamental trade is that it favors invasion of alien species and their associated parasites (Chan et al., 2019; Gippet & Bertelsmeier, 2021). The effects of the ornamental trade on natural fish populations in the Amazon basin, however, remain poorly studied. Anecdotal information suggests population collapses or declines under exploitation pressure at some locations in the Rio Negro for discus (Symphysodon discus) (Crampton, 1999) and cardinal tetra (Paracheirodon axelrodi) (Andrews, 1990; Chao & Prada-Pedreros, 1995). In the Peruvian Amazon, exploitation for the ornamental trade has led to reductions in ornamental species at study locations by over 50% in fish abundance, diversity and biomass (Gerstner et al., 2006).

The cardinal tetra is the number-one export species in the ornamental fish trade in Brazil, accounting for 70% of the total volume of Brazilian fish exports (Anjos et al., 2006). The cardinal tetra inhabits the middle and upper Negro River, and its trade corresponds to 60% of the economy of the municipality of Barcelos. However, fishery
data have yet to be collected to better evaluate the effects of this artisanal fishery on fish populations. Based on information from fishers and the data obtained from sampling ornamental fish, which is the result of fish caught per area sampled, the world economic collapse that began in 2008 directly affected the gross amount of exported ornamental fish (mostly cardinal tetra) (Figure 7).

Figure 7: Data from Zehev et al. (2015), confirmed by interviews with fishers.

There was a decrease in both the number of people involved in exploiting ornamental fish and in the catch volume. In fact, the decrease in the 2010s, followed by another economic crisis, ended the boom in ornamental fish export from Brazil. Considering bycatch (other species caught together with the target species), ornamental fisheries would not be sustainable without an observatory group combining the fisher community, dealers and researchers. The observatory program is viable for the ornamental fish market and can increase sales by emphasizing fish preservation and the well-being of the local communities that are still active in this trade in a manner similar to what occurred with the “fair-trade coffee market” (Zehev et al., 2015).

Owing to the increasing exploitation of ornamental fish, the silver arowana (Osteoglossum bicirrhosum) has been placed on the Red Book list in Colombia (Mojica et al., 2002), and this species may also be threatened in Peru (Moreau & Coomes, 2006, 2007). Export of this species for ornamental purposes is prohibited in Brazil (Lima & Prang, 2008; Prang, 2008).
Chapter 20

Ongoing climate change is also a concern for conservation of ornamental fish. The cardinal tetra will be more affected by increased temperatures than its congeneric, the neon tetra (*Paracheirodon simulans*) (Gonçalves et al., 2018), while comparisons of projected changes with the temperature tolerances of other ornamental fish, such as dwarf cichlids and piabas, have shown that they will certainly be affected by climate change forecast by the IPCC for 2100. Fishes living under abundant forest cover, such as first and second order streams or streams coming from springs, will be much more affected by temperature increases than are fishes that are adapted to warmer waters (Almeida et al., 2020). Fish that occur near or at the equator, where temperature is higher, are close to their upper limits for survival even in the absence of further global warming (Campos et al., 2021).

4. INVASIVE SPECIES

The introduction of invasive fish species worldwide is responsible for the homogenization of aquatic fauna, driven especially by a few species, such as *O. niloticus*, *C. carpio* and *P. reticulata* (Villéger et al., 2011; Toussaint et al., 2016a) – all of which have been introduced in Amazonia. Invasive species are used in Amazonia for farming, cultivation of ornamental species, and recreational fishing (Lima-Junior et al., 2018). Fish introduced in the lakes and reservoirs of the Brazilian Amazon often belong to predatory species (*Cichla* spp., *Astronotus* spp. and *Pygocentrus nattereri*) contributing to the reduction in abundance or loss of native fish species, with whole-ecosystem consequences such as loss of native species’ habitats, decrease of local species due to the many invasive species that eat native fish species’ eggs, and competition for food, leading to changes in species composition and to modifications of food-webs (Zaret & Payne, 1973; Latini & Petrere, 2004; Pelicice & Agostinho, 2009; Pelicice et al., 2015b; Fragoso-Moura et al., 2016). Andean watercourses in Bolivia and Peru the introduction of the predatory rainbow trout *Oncorhynchus mykiss* resulted in local extirpation or greatly reduced abundance of native *Astroblepus* spp. (Ortega et al., 2007; Van Damme et al., 2011). In the lake Titikaca system, the introduced rainbow trout and pejerrey (*Odonthestes bonariensis*) resulted in the extinction of *Orestias cuvieri* and in declines in many other native species (Anderson & Maldonado-Ocampo, 2011; Ortega et al., 2007; Van Damme et al., 2009). The outcomes of these invasions are unknown: some introduced species may succeed permanently and become adapted, pushing other species to population decreases or even extinction. An example is the
domination by introduced tucunaré (Cichla ocelaris) in “ações” (farm ponds formed
by small dams) in the Northeast region of Brazil. The rapid adaptation and increase and
domination of populations of invasive species has often been explained in conservation
studies as resulting from the absence of a predator or the absence of a food competitor
(Allendorf & Gordon, 2006; Frankham et al., 2012).

Sport fishing and collection for ornamental and aquaculture purposes have motivated
the introduction of tilapia (Oreochromis niloticus), guppy (Poecilia reticulate), and
common carp (Cyprinus carpio), but their impacts are still poorly investigated (Ortega
et al., 2007; Anderson & Maldonado-Ocampo, 2011; Van Damme et al., 2011;
Gutiérrez et al., 2012; Doria et al., 2020). In 2020, the Brazilian government authorized
and initiated promotion of raising tilapia (Oreochromis spp.) in cages in reservoirs
(Charvet et al., 2021) despite the fact that tilapia can affect native species through
competition and spread of diseases (Deines et al., 2016). If tilapia populations become
dense, they can release enough phosphorus into the water to cause eutrophication, which
leads to widespread fish mortality, as occurred in the case of the Paranoá Lake in
Brazil (Starling et al., 2002).

The proliferation of hydroelectric dams in Amazonia makes the region more vulnerable
to invasive species, as dams facilitate invasive fish species. For example, specialist
species that are adapted to running water progressively disappear from the newly
created reservoirs upstream of dams and, if eurytopic native species (species able to
tolerate a wide range of ecological conditions) cannot take their place, then the niche is
often taken by alien species (Liew et al., 2016). This is facilitated by the potential
sources of tilapia entry into reservoirs: in addition to the recently legalized rearing of
tilapia in cages in the reservoirs themselves in Brazil, many tilapia aquaculture farms
are installed close to reservoirs and fish may escape through water drained from the
ponds.

The introduction of some Amazon predatory fish species in regions outside their
original area of occurrence can have major effects on local fish communities. This is the
case for tucunaré (Cichla spp.) and pirarucu or paiche (Miranda-Chumacero et al.,
2012), which were introduced in small dams in northeastern Brazil (Pelicice &
Agostinho, 2009). A recent review revealed that 1314 records of non-native fish species,
belonging to 9 orders and 17 families, were observed in the Amazon basin, with a sharp
increase in the last 20 years (75% of occurrences) since the first record in 1939 (Doria et al., 2021). Non-native species were mainly introduced by the ornamental trade, or for aquaculture and sport-fishing purposes. The most widespread non-native species were *Arapaima gigas*, *Poecilia reticulata* and *Oreochromis niloticus*. Overall, our current understanding of impacts of invasive fish species in Amazonia remains limited due to a paucity of studies (Doria et al., 2021; Frehse et al., 2016). Nevertheless, *O. niloticus*, *C. carpio* or *P. reticulata* are among the few widespread introduced species held responsible for the homogenization of fauna worldwide (Villéger et al., 2011; Toussaint et al., 2016a). Fauna homogenization may result in alteration of food-web structure. This is a major concern as the Amazon basin not only hosts the world’s highest freshwater fish diversity (Jézequel et al., 2020), but also has the highest functional diversity (Toussaint et al., 2016b).

5. DEFORESTATION

Deforestation is a driver of aquatic degradation that can have effects that differ between the directly impacted areas and areas downstream: local deforestation can have regional consequences. At the small to medium scale, deforestation usually results in increased runoff and discharge: for example, deforestation has resulted in a 25% increase in discharge in large river systems such as the Tocantins and Araguaia Rivers, with little change in precipitation (Coe et al., 2009). At a larger scale, atmospheric feedbacks (reduced precipitation caused by decreased evapotranspiration) can change the water balance not only in the basins where deforestation has occurred but throughout the entire Amazon via the atmospheric circulation (Coe et al., 2009).

By increasing water runoff and sediment loads carried by the rivers, deforestation typically alters geomorphological and biochemical processes downstream with consequences for soil erosion and for the biological productivity of aquatic ecosystems (Neill et al., 2001; Coe et al., 2009; Deegan et al., 2011; Iñiguez-Armijos et al., 2014; Ilha et al., 2018). For example, stronger floods result in the washing out of substrate and associated production of the benthos on which migratory detritivores feed (Flecker, 1996). Decreased water transparency reduces algal and zooplankton production in floodplain lakes, which are important feeding and nursery areas for most fish species (Bayley, 1995; Pringle et al., 2000).
Chapter 20

The chemical properties of streams flowing through pastures are radically different from those of streams in neighboring forests (Krusche et al., 2005; Neill et al., 2006; Deegan et al., 2011). Solute in groundwater are also affected, thereby contributing to changes in stream chemistry (Williams et al., 1997). Direct exposure to sun and changes in temperature, oxygen, chemical content and bottom substrates greatly affect aquatic fauna (da-Silva Monteiro Júnior et al., 2013). Increased water temperatures and reduced oxygenation during the dry period can be lethal for fish (Winemiller et al., 1996).

Cardinal tetras are sensitive to increased temperatures (Fé-Gonçalves et al., 2018). The two congeneric species of cardinal tetras are distributed in inter-fluvial areas in the upper part of the Rio Negro basin and inhabit two distinct environments with different vegetation cover and temperature (Marshall et al., 2011). The water temperatures of these environments differ by less than 2°C but coincide with the maximum thermal limits for both species (Campos et al., 2011). Small characins are usually found in small forested “terra-firme” (upland) streams. Increase in water temperature caused by deforestation will thus affect fish species living in streams in deforested areas. Severe disturbances in fish communities can result because many species live close their critical tolerance limits (Campos et al., 2018).

In small streams, deforestation reduces the availability of large instream wood, which plays critical roles in the structure, diversity and abundance of fish communities, thus impacting fisheries and ecosystem functions (Wright & Flecker, 2004). Loss of smaller debris could impact benthic insects and macroinvertebrates that the fish eat. Recent studies have demonstrated negative impacts of deforestation on fishery yield (Castello et al., 2018) and on fish species richness, diversity, abundance (Lobón-Cerviá et al., 2015; Arantes et al., 2018; Freitas et al., 2018), biomass and functional diversity (Arantes et al., 2019a). All these impacts can be reduced if riparian forests are maintained – for example, if an area is converted to pasture, but a forest strip is left along the margins of waterbodies, these will be less affected by the impacts of deforestation (de Paula et al., 2021). The wider the strip, the less the impact on the aquatic ecosystems; for example, in eastern Amazonia the percentage of forest cover within 100 m of a stream is closely related to macroinvertebrate diversity in the stream (de Paula et al., 2021). Even a small fraction of forest loss in a catchment is sufficient to transform the communities of benthic invertebrates and vertebrates (mainly fish) in Amazon streams (Brito et al., 2020; Almeida et al., 2020; Campos et al., 2018). Reducing forest cover by only 6.5% within
Chapter 20

50 m of a stream is enough to cross thresholds for aquatic invertebrates (Dalà’corte et al., 2020).

A forest border protects the stream banks from erosion and avoids destruction of the stream bed, maintains cooler temperatures and helps maintain better water quality. In Brazil the legal requirement for such protection has been greatly reduced since 2012 when the country’s Forest Code was replaced by a law that redefines the water level from which the required forest border is measured, changing this basis for measurement from the maximum to the minimum level and thereby eliminating all requirement for protection in most Amazon rivers due to their large annual variation in water level.

6. POLLUTION

6.1. Agricultural chemicals

The expansion of chemical-intensive crops such as soybeans and oil palm increases the risk of water contamination from agricultural chemicals. The expansion of soybean production in southern Amazonia is of particular concern due to the heavy use of herbicides, including glyphosate (Roundup ©). Little information is available from direct measurements in Amazon watercourses. A 2016 review on pesticides in Brazilian freshwaters found no studies in the country’s Amazon biome (Albuquerque et al., 2016). A 2020 study in the area near Santarém, where soybeans are expanding, sampled watercourses and/or groundwater at 28 sites, out of which glyphosate was detected at 11 sites at levels between 1.5 and 9.7 µg/L (Pires et al., 2020). Presence of pesticides in aquatic animals indicates water contamination, as in the case of organochlorine pesticides in fish in the Tapajós River (Mendes et al., 2016), turtles in the Xingu River (Pignati et al., 2018) and in Amazon river dolphins in the Solimões (Upper Amazon) and Madeira Rivers (Lailson-Brito Jr. et al., 2008). The same dolphins also had polychlorinated biphenyls in their blubber (Lailson-Brito Jr. et al., 2008; Torres et al., 2009).

In Brazil, several hundred agricultural chemicals have been newly authorized for use under the current presidential administration, many of which are banned in other countries (Ferrante & Fearnside, 2019). Pesticides, herbicides, medicines and other drugs (including endocrine disruptors), are released in the environment. The time they remain in the environment is still undetermined for some compounds. Transition metals...
Chapter 20

and other pollutants in Amazon aquatic communities may affect local fishes differentially due to their respiration, reproduction, trophic position and metabolic characteristics, which differ among different fish assemblages (Duarte et al., 2009; Braz-Mota et al., 2017). For example, in Venezuelan streams, particulate or dissolved compounds coming from agricultural effluents resulted in strong water de-oxygenation through micro-organismal decomposition and, subsequently, in the loss of fish species (Winemiller et al., 1996). By killing mostly adult fish, these relatively localized effects have potentially long-term consequences (Braz-Mota et al., 2017). The herbicide glyphosate (Roundup®) and the pesticide Malathion have been shown to cause metabolic and cellular damage in fish exposed to concentrations lower than their 50% lethal concentrations (LC50) (Silva et al., 2019; Sousa et al., 2020).

Laboratory experiments on fish have shown that this and other herbicides cause damage to the liver and gills, DNA breakage and increased expression of oncogenes (Braz-Mota et al., 2015; Silva et al., 2019; Souza et al., 2020). Field observations on frogs monitored before and after these herbicides were applied in an area in central Amazonia revealed that two species (Scinax ruber and Rhinella marina) developed malformations not present before the herbicide application or at a location 600 m from the application site. In addition, three previously abundant Leptodactylus species became locally extinct (Ferrante & Fearnside, 2020).

6.2. Oil spills and toxic waste

The western part of the Amazon basin has large oil reserves (see Chapter 19). Crude oil spills and untreated toxic wastes resulting from oil and gas exploitation are notorious in the Amazon portions of Ecuador (Jochnick et al., 1994) and Peru (Kimerling, 2006; Martínez et al., 2007; Yusta-García et al., 2017) (Figure 8). In Ecuadorian Amazonia between 1972 and 1992, crude oil discharged into the environment totaled 73 billion liters, or 1.8 times the 41 billion liters released by the Exxon Valdez oil tanker disaster in Alaska (Sebastián & Hurtig, 2004; Kimerling, 2006, p. 458). Over this period 43 billion liters of produced water (oilfield brine) was also released, which contains salts that disrupt fish migrations (Kimerling, 2006, pp. 450-453). Oil is toxic to fish (Sadauskas-Henrique et al., 2016), and oil-associated contamination can have far-reaching impacts on Amazon aquatic communities because the oil can disperse over the entire downstream network (Yusta-García et al., 2017). Oil extraction produces large
amounts of toxic mud and produced water (oilfield brine), which in Peru and Ecuador have been routinely released into the environment rather than being pumped back into the wells (Moquet et al., 2014; Kimerling, 2006, pp. 450-453). This brine has both high salt concentrations and a variety of toxic substances including heavy metals, in addition to a significant amount of oil. Concentrations of hydrocarbon-related toxins have been found in Ecuadorian streams up to 500 times higher than those allowed by regulations in Europe (Sebastián & Hurtig, 2004).

The effect of oil can last for decades, as indicated by a spill of 11 billion liters of crude into the Coca and Napo Rivers in Ecuador in 1987, where the affected waters had not recovered their fish biodiversity by 2006 (Kimerling, 2006, p. 458). Oil spills also greatly impact aquatic invertebrate communities, reducing both abundance and species richness, as shown by studies in streams and floodplains affected by oil near Manaus, Brazil (Couceiro et al., 2006, 2007a).

Figure 8. Oil leaks from a submerged pipeline in Peru. Source: Fraser (2014). Photograph: Barbara Fraser. [https://intercontinentalcry.org/wp-content/uploads/2014/07/drip.jpg]

Extraction of oil and natural gas near the Urucu River, in the western part of the Brazilian Amazon, is a concern due to potential impacts on adjacent waterbodies. Although the oil company responsible (Petrobras) ensures that all safety operation protocols are being observed, there is always the possibility of an oil spill. The oil pumped from the Urucu wells travels in large barges down the Solimões (Upper
Chapter 20

Amazon River from Coarí to Manaus, where it is refined (Figure 9). Amazon fishes have evolved in hypoxic water and have developed many strategies that forced them to either breathe air or take water from the film at the top of the water column, which is richer in oxygen (Val et al., 1998; Soares et al., 2006). As mentioned above, these strategies threaten air-breathing fish if oil spills occur (Val & Almeida-Val, 1999).

Figure 9. Transport of oil from Urucu to Manaus, by an oil and gas pipeline from Urucu (RUC) to Coarí, and by barge from Coarí to Manaus. The inset map shows oil project areas throughout Amazonia.

Brazil’s “Solimões Sedimentary Basin” oil and gas project is rapidly moving forward to open a vast “strategic influence area” covering 47 million hectares (larger than the US state of California) to exploitation in the western Brazilian Amazon (Fearnside, 2020b) (Figure 10). Rights to the first drilling blocks have already been sold to Rosneft, the Russian company that Greenpeace-Russia accuses of causing over 10,000 oil spills throughout the world (Fearnside, 2020c). This oil and gas project also carries a
substantial risk of resulting in road access to the vast “trans-Purus” region between the Purus River and Brazil’s border with Peru, resulting in deforestation of the last great block of intact forest in Brazilian Amazonia (Fearnside et al., 2020).

Figure 10. Brazil’s “Solimões Sedimentary Basin” oil and gas project. The purple areas are the Urucu wells, currently in production. The thin green lines represent the locations for future drilling where seismic surveys have already been carried out. The project’s “Strategic Influence Area,” delimited by the red line, covers 47 million hectares (larger than the US state of California). Source: Brazil, EPE (2020, p. 65).

6.3. Mining

Gold mining is especially prominent in Brazil and Peru, and the scale and consequent impacts of this activity could increase substantially. Brazilian Amazonia, most of the many requests for permits for mineral prospecting are for gold (Figure 11). Mining alluvial gold, as by “wildcat” miners (garimpeiros), releases large amounts of sediment into the watercourses (Figure 12).
Figure 11. Official mining concessions and illegal activities.
Chapter 20

Figure 12. Sediment from gold mining enters the Tapajos River at its confluence with the Crepuri, one of several tributaries in central Pará discharging sediments from gold mining into the Tapajós. Source: Guimarães (2020). Photograph: Jean R.D. Guimarães.

Preparations for large-scale industrial operations are rapidly moving forward (Arsenault, 2021). The Canadian mining company Belo-Sun is preparing a massive operation planned just downstream of the Belo Monte Dam on the Xingu River. The operation would extract gold from two open-pit mines beside the Volta Grande (Big Bend) stretch of the river that is already heavily impacted by reduced water flow due to the dam. Risks include the tailings dam, cyanide use, and demand for large amounts water from the already insufficient flow of the Volta Grande (Emerman, 2020). The 44-m high tailings dam will remain indefinitely after the mine is exhausted after an estimated 17 years of operation, and its rupture is believed capable of provoking a catastrophe equal to that provoked by the 2015 Mariana mine-tailings disaster on the Rio Doce in Minas Gerais (Tófoli et al., 2017). It would release over 35 million m³ of tailings containing cyanide used for extracting the gold (Emerman, 2020).

Bauxite mining and the processing of the ore to produce alumina and then aluminum can release toxic fines known as “red mud” into aquatic ecosystems. At the Mineração Rio do Norte bauxite mine on the Trombétas River in Pará, a large lake (the Lago Batata) was completely filled with 24 million tons of this mud in the 1980s, killing virtually all aquatic life (Borges & Branford, 2020; Soares, 2015). In 2018, a holding pond for red mud burst at the Norsk Hydro alumina plant in Barcarena, Pará (Fearnside,
Gold mining, much of which is illegal, is widespread in the Amazon basin (Figure 13). In Brazil it occurs in rivers such as the Tapajós, Tocantins, Madeira, Xingu, Negro, Amapari and Solimões or Upper Amazon (dos Santos et al., 2000; Roulet et al., 1998); in Bolivia it occurs in the Madeira, Beni and Iténez Rivers (Pouilly et al., 2013); in Colombia it occurs in the Putumayo, Caquetá, Guanía, Vaupés and Inirída Rivers (Nuñez-Avellaneda et al., 2014); in Ecuador it occurs in the Nambija River, and in French Guiana it occurs along the tributaries of the Black River (Barbosa & Dorea, 1998). Illegal invasion of Indigenous areas in Brazil by “wildcat” gold miners (garimpeiros) has long been a major impact on these areas, including their aquatic ecosystems, and a bill that would legalize these and other activities in Indigenous areas has the potential to greatly increase these impacts (Branford & Torres, 2019; Villén-Pérez et al., 2020).

Figure 13. Gold-mining barges in the Madeira River release mercury (as well as sediments). Source: Goulding et al. (2003). It is estimated that the mercury shed by gold mining in the Brazilian Amazon totals more than 200,000 tons since the late 19th Century (Bahía-Oliveira et al., 2004). Gold
mining has been estimated to account for 64% of the mercury entering Amazon aquatic systems (Roulet et al., 1998, 2000; Artaxo et al., 2000; Guimaraes et al., 2000). The remaining amount reaches aquatic systems due to runoff from natural deposits that are eroded by deforestation (33%) and by atmospheric emissions resulting from deforestation and forest fires (3%) (Roulet et al., 1998; Souza-Araújo et al., 2016). On the basin scale, the dynamics of mercury involve abiotic physical processes (i.e., downstream transport of sediments). Elemental mercury can then be turned into the toxic methylmercury form by specific bacteria in anoxic environments, such as those created at the bottom of reservoirs (Section 2.1.4 in the present chapter) or in thermally stratified natural lakes and rivers.

Methylmercury enters aquatic food webs and bioaccumulates with trophic levels (Morel et al. 1998; Ullrich et al. 2001). Vertebrate populations that have accumulated mercury migrate upstream, including both fish migrations for spawning and side migrations in the floodplains (Molina et al., 2010; Nuñez-Avellaneda et al., 2014; Mosquera-Guerra et al., 2019). High concentrations of total mercury (Hg) and methylmercury (MeHg) in aquatic trophic networks have been documented since the 1980s (Martinelli et al., 1988; Lacerda et al., 1997; Lacerda & Salomons, 1998).

Wildlife (mainly omnivorous and carnivorous species) is exposed to MeHg through their diet (Ullrich et al., 2001; Sarica et al., 2005; de Moura et al., 2012). Mercury bioaccumulation causes concentrations to increase greatly in top predators such as large catfish, black caiman, and mammals such as otters, and dolphins (Markert, 2007; Molina et al., 2010; Bossart, 2011; Salinas et al., 2013; Nuñez-Avellaneda et al., 2014; Mosquera-Guerra et al., 2015, 2019). Because many aquatic mammals are at the tops of food chains, they are especially threatened by bioaccumulation of mercury (Brum et al., 2021) (Figure 14).

Figure 14. Bioaccumulation of mercury in the Rio Negro (source: Kasper, 2018).
Chapter 20

In contrast to other sources of contamination, mercury has received considerable attention in the Amazon basin, and several studies have reported mercury concentrations in fish well above the acceptable limit defined by the World Health Organization (0.5 mg kg\(^{-1}\)) (e.g., Hacon et al., 2008; Roach et al., 2013). Nuñez-Avellaneda et al. (2014) evaluated the presence of total mercury in muscle tissue samples of eleven fish species at four locations in the Colombian Amazon, reporting values that ranged between 0.0116 and 2.0123, mean = 0.3549 mg Hg kg\(^{-1}\). Mosquera-Guerra et al. (2015) reported that 54% (n = 103) of the total tissue samples of the catfish species *Calophysus macropterus* (omnivore) from the Amazon had concentrations between 0.11 and 1.66 mg Hg kg\(^{-1}\), coinciding with the findings of Salinas et al. (2013) for the same catfish species. However, elevated levels of mercury in fish can also occur naturally at locations far from human activities (Marshall et al., 2016). This is because mercury is present in the soil independent of human activities – since Amazon soils are ancient, they have slowly accumulated mercury that is injected into the atmosphere by volcanic eruptions and deposited by precipitation worldwide. Data on Hg concentrations from muscle-tissue samples Amazon aquatic mammals that are top predators include the giant otter (*Pteronura brasiliensis*) in the Rio Negro in Brazil’s Pantanal, with a mean mercury concentration of 0.17 mg kg\(^{-1}\) in muscle tissue (Dias-Fonseca et al., 2005). Dietary fish consumption in some Amazon human communities is responsible for some of the world’s highest recorded mercury levels in human hair, along with associated health issues (Passos & Mergler, 2008). Through fish consumption, humans also bioaccumulate mercury – this is discussed in Chapter 21.

Among endangered species, high concentrations of mercury have been reported in the giant otter (*Pteronura brasiliensis*) in Brazil (Dias Fonseca et al., 2005), in the Amazon river dolphin (*Inia geoffrensis*) in Colombia, Brazil, and Bolivia (Rosas & Lethi, 1996; Mosquera-Guerra et al., 2015, 2019), and in the gray river dolphin (*Sotalia fluviatilis*) in Brazil (Mosquera-Guerra et al., 2019). Along the coast off the Amazon, mercury was also found in tissues of the coastal dolphin (*S. guianensis*) (de Moura et al., 2012). Effects of mercury on small cetaceans include liver abnormalities and serious disorders in the kidney and brain (Augier et al., 1993). Elsewhere, the combination of mercury with other pollutants in small cetaceans resulted in sensory deficits, behavioral deficiency, anorexia, lethargy, reproductive disorders and death of fetuses, as well as deficiencies in the immune system that facilitate the appearance of pneumonia and other
infectious diseases (Cardelicchio et al., 2002) – it remains unknown whether the same impacts are occurring in Amazon river and marine dolphins.

6.4. Urban sewage and Plastic waste

Urban sewage greatly affects aquatic invertebrates, reducing both abundance and species richness, as shown by a series of studies in 20 streams in the Manaus area (Couceiro et al., 2006, 2007a,b, 2010a; Martins et al., 2017). The effect varies by taxonomic group, which allowed an index of pollution severity to be developed using aquatic insects as bioindicators (Couceiro et al., 2012). Streams in Manaus are also contaminated with a variety of hydrocarbons both from biomass burning and from petroleum (de Melo et al., 2020).

Streams in Manaus have been found to contain human pharmaceuticals, as well as traces of cocaine, but these are diluted below detection limits of this study after entering the major rivers (Thomas et al., 2014; de Melo et al., 2019). Pollution with pharmaceutical compounds can affect fish (dos Santos et al., 2020) and macrophytes (Otomo et al., 2021). Pharmaceutical pollution is a growing threat to aquatic environments throughout Latin America, including the Amazon countries (Valdez-Carrillo et al., 2020). Samples taken at 40 sites along the Amazon River and major tributaries in Brazil found 30-40 compounds near major cities and 1-7 compounds in the Amazon River far from cities (Fabregat-Safont et al., 2021). A survey at 40 sampling sites along the Amazon River, three tributaries (Negro, Tapajós and Tocantins Rivers), and four cities found that chemical pollution can cause long-term effects in 50–80% of aquatic species near urban areas (Rico et al., 2021).

Large amounts of plastic are discarded in Amazon rivers and streams (Figure 15), and the presence of microplastics has now been detected in river sediments (Gerolin et al., 2020) and in the sand of a beach off the coast of the Amazon (Martinelli Filho & Monteiro, 2019). Microplastics have also been found in fish species from all trophic levels, including 13 species from the Xingu River (Andrade et al., 2019) and 14 from the Amazon estuary (Pegado et al, 2018). Micro- and nanoplastics have impacts in aquatic ecosystems, including serving as carriers for persistent organic pollutants (POPs) (Besseling et al., 2019) and transferring chemicals that can provoke hepatic stress in fish (Rochman et al., 2013). They can also affect mammals (Rubio et al., 2020). The amount of plastic transported by Amazon rivers, from the Andean piedmont
down to the mouth of the Amazon River, has not yet been quantified. A substantial accumulation of plastic litter and microplastics has recently been quantified on a river beach in Ecuadorian Amazon (Lucas-Solis et al., 2021). Many cities, towns, and municipalities that populate rivers and tributaries across the basin do not have plastic and waste management in place, and this remains as one of the main challenges to be tackled by policy makers for the conservation of healthy freshwater ecosystems in the region. The Amazon River is estimated to discharge annually 32,000–64,000 tons of plastic into the Atlantic Ocean (Lebreton et al., 2017). The Amazon River has also been identified as a major source of organic plastic additives to the tropical North Atlantic (Schmidt et al., 2019).

Figure 15. Plastic waste discarded in a stream in Manaus. Source: Giarrizzo et al. (2019).

7. INTERACTIONS AMONG DRIVERS

Although most drivers of degradation in aquatic ecosystems have been discussed separately, several are highly correlated, often interacting, and aquatic organisms will have to cope with some combination of these drivers. The impacts of land-cover change, global climate change, dams and mining have interactions that are causing large-scale degradation of Amazon freshwater ecosystems, and current development trends imply dramatic increases in these impacts (Castello & Macedo, 2016).

Several of the drivers discussed here can directly or indirectly promote deforestation. Hydropower dams induce road construction, which in turn lead to increased
deforestation and agriculture, which often also result in more deforestation (Finer & Jenkins, 2012; Chen et al., 2015; Lees et al., 2016; Forsberg et al., 2017; Anderson et al., 2018). As already explained, regulation of hydrological cycles by dams will isolate large portions of the floodplains, which will likely be exploited for agriculture, further increasing deforestation (Forsberg et al., 2017).

Similarly, the waterway in the Tapajós sub-basin is likely to encourage further deforestation directly through increased soy production in Mato Grosso. Soy plantations result in aquatic ecosystems receiving runoff containing fertilizers, herbicides, pesticides and sediment from soil erosion (Section 6.1 in this chapter). The effect of waterways in reducing transportation costs and inducing replacement of pasture by soy results in indirect land-use change, where cattle ranchers sell their land to soy farmers and move to other parts of the Amazon to clear forest for cattle pasture (Arima et al., 2011; Fearnside, 2015c) (See Chapters 14 and 15).

One of the impacts of waterways is that they serve to justify hydroelectric dams regardless of how severe the impacts of the dams may be. Without a complete sequence of dams on a river, the entire waterway would cease to function because the barges cannot pass the rapids and waterfalls that would be eliminated by the reservoirs. The Tocantins/Araguaia waterway (Fearnside, 2002b) and the Tapajós waterway (Fearnside, 2015c) both serve as examples. In the case of the Madeira River, a plan for 4000 km of waterways in the Amazon portion of Bolivia, intended to transport soybeans, was used as an argument in the viability study for Brazil’s Santo Antônio and Jirau Dams (Fearnside, 2014a,b).

Exploitation of new sources of energy, such as oil, usually require road construction, hence deforestation (Anderson et al., 2018; Fearnside, 2020a). Oil exploitation also has strong combined effects with dams, devastating aquatic biota where these drivers intersect (Anderson et al., 2019). Indirect effects of oil exploitation, such as road building and deforestation, can lead to fragmentation of aquatic connectivity or habitat loss for migratory species, further aggravating the effects of dams and waterways. In the Peruvian Amazon, the Interocoean highway has had a dual impact on the rivers and associated terrestrial ecosystems. As shown by satellite imagery analyzed by the MAAP project, this road has promoted land-use change due to agriculture expansion in the north, while at the same time facilitating access to previously pristine forests along the...
Chapter 20

Malinowsky and Inambari Rivers for the extraction of alluvial gold (Finer et al., 2018; Sánchez-Cuervo et al., 2020).

Climate-induced increases in the severity of droughts and in the length of the dry season will likely lead to further deforestation and fires (Malhi et al., 2009). The effects of climate change will also interact with other anthropogenic impacts. Warming trends will increase water temperatures, increasing the toxicity of pollutants to organisms and bioaccumulation of mercury in aquatic food webs (Ficke et al., 2007; Val, 2019). The expected trend of declining discharges in the Amazon basin, except in the western part (Sorribas et al., 2016; Farinosi et al., 2019), could result in fish biodiversity loss of up to 12% in the Amazon basin and 23% for the Tocantins basin (Xenopoulos et al., 2005). Droughts and decreased river discharge are also expected to impact fish community composition, population size and structure, reproduction and recruitment (Poff et al., 2001; Lake, 2003; Freitas et al., 2013; Frederico et al., 2016).

Increased temperature and reduced oxygen concentration resulting from reduced water volumes are also expected to be detrimental for many aquatic organisms, including fish (Lake, 2003; Ficke et al., 2007; Frederico et al., 2016; Nelson & Val, 2016; Gonçalves et al., 2018; Lapointe et al., 2018; Campos et al., 2019). In adult organisms, energy is allocated to growth, reproduction and maintenance metabolism (Val & Almeida-Val, 1995; Wootton, 1998; Almeida-Val et al., 2006). The surplus energy spent in compensating for increased thermal conditions will therefore come at the expense of growth and reproduction and is likely to increase susceptibility to disease (Ficke et al., 2007; Carvalho Freitas et al., 2012; Oliveira & Val, 2017; Costa & Val, 2020). Higher temperatures are also expected to favor eutrophic conditions and to stimulate macrophyte development in floodplain lakes, modifying food-web dynamics and affecting the fish that depend on them (Ficke et al., 2007).

Global warming and reduced oxygen availability result in shrinking body size in many organisms (Sheridan & Bickford, 2011), and this is also expected in fishes (Cheung et al., 2013; Oliveira & Val, 2017; Pauly & Cheung, 2018; Almeida-Silva et al., 2020), which could impact fisheries across the region. Declining body sizes under global warming could lead to ecosystem alteration through a trophic cascade for predatory species (Estes et al., 2011) or through disruption of carbon flows for detritivorous species (Taylor et al., 2006) and consequent decreased recruitment because reproductive
output is proportional to body size in most fishes. Expected climate-driven reductions of fish size will also further accelerate the fishing-induced size decreases that have already been observed for commercial species.

Fragmentation of river networks by hydroelectric dams and other infrastructure will constrain potential range shifts of aquatic species to cope with expected temperature rise under climate change (Myers et al., 2017). Range shifts of fish to higher altitudes as a result of climate change have already been documented, and river fragmentation by dams will block this form of adaptation (Herrera-R et al., 2020). Andean aquatic species will likely be particularly impacted because most dams have been built or are planned on Andean tributaries (Forsberg et al., 2017; Anderson et al., 2018; Tognelli et al., 2019).

8. CONCLUSION

- Rivers provide connections between widely separated aquatic and terrestrial ecosystems through flows of water, sediment and nutrients, and through fish migrations. Fragmenting rivers therefore has consequences that are far-reaching (and often international).

- Free-flowing rivers and their interacting floodplain ecosystems generate the ecosystem services that have local, regional, and global impacts (e.g., fisheries for food security, sediment transport, and carbon sequestration).

- Aquatic ecosystems are particularly prone to cumulative or synergistic impacts. These include from multiple dams on rivers and the combined impacts of changes in river flows, oxygen levels, water temperatures and levels of pollution.

10. RECOMMENDATIONS

- No more Amazon dams with installed capacity ≥ 10 MW should be built.

 “Micro” dams for a single town or village can be built with proper environmental licensing and using a risk-based approach.
Energy policy should prioritize electricity conservation, halt exports of electr

intensive products and redirect investment in new electricity generation to wind
and solar sources.

Decision making on infrastructure projects should be reformed such that direct
and indirect environmental and social impacts are compiled and democratically
debated before decisions are made in practice.

Urgent attention should be given to creating protected areas for Amazon aquatic
ecosystems. The present protected areas are designed for terrestrial ecosystems
and generally do little to protect aquatic biota.

Selected watersheds throughout Amazonia need to be preserved for research,
long-term monitoring and protection of genetic and species diversity. These
watersheds will also maintain ecological communities that can be needed for
recovery efforts.

Rivers and streams should be protected by an adequate forest border when
surrounding land is converted to other uses.

Better regulation and monitoring of exotic species is needed, especially for fish
culture. Inter-basin water diversion projects, which inevitably lead to
introduction of exotic species, should be avoided.

Adequate controls are needed on urban sewage, plastic pollution, mercury and
other heavy metals and on the use of agro-chemicals.

Control of sediments and waste from mining is needed.

Alluvial mining must be banned across the Amazon basin to preserve Amazon
aquatic biodiversity, floodplain forests and indigenous health.

Regional governments and municipalities must prioritize the cleaning of sewage
water in order to preserve the health of aquatic biota and human populations.

The exchange of policy experiences among local governments (including
indigenous groups) should be fostered within the different countries of the
Amazon.

Because aquatic resources are not private property, they require encouragement
of cooperative arrangements to manage their use (including exclusion of outside
fishing vessels) and enforcement of restrictions on overharvesting.

Proper accounting of the greenhouse-gas emissions of Amazon dams is needed.
Amazon countries should reduce their emissions and should become leaders in convincing countries throughout the world to increase their Nationally Determined Contributions (NDCs) and accelerate international negotiations to achieve global emissions reductions sufficient to keep global temperatures within the limit specified in the Paris Agreement: a level “well below” 2°C above the pre-industrial average. Substantial investment from foreign countries and private donors is necessary to help Amazon countries in this role.
Chapter 20

11. REFERENCES

Chapter 20

Chapter 20

Arsenault C. 2021. Canadian firm’s proposed gold mine in Amazon rainforest a step closer to reality, CEO says*bityl.co/6Kz4. Viewed

Barbosa C. 2018. Hydro também contaminou mananciais em Abaetetuba, diz IEC. *Amaz Real*.
Chapter 20

Chapter 20

Cardellicchio N, Decataldo A, Leo A Di, and Giandomenico S. 2002. Trace elements in organs and tissues of striped dolphins (Stenella coeruleoalba) from the Mediterranean sea (Southern Italy). *Chemosphere* **49**: 85–90.

Chapter 20

Chapter 20

Chapter 20

Fearnside PM. 2020. The danger of Brazil’s Amazon plans for oil and gas: Response to EPE (commentary). *Mongabay*.

Fearnside PM. 2020. Oil and gas project threatens Brazil’s last great block of Amazon forest (commentary). *Mongabay*.
Chapter 20

Fearnside PM, Ferrante L, Yanai A., and Junior IMA. 2020. Trans-Purus: Brazil’s last intact Amazon forest at immediate risk (commentary). Mongabay.

Fearnside PM. 2009. As hidrelétricas de Belo Monte e Altamira (Babaquara) como fontes de gases de efeito estufa. Novos Cad NAEA 12.

Fearnside PM. 2002. Greenhouse gas emissions from a hydroelectric reservoir (Brazil’s Tucurui Dam) and the energy policy implications. Water Air Soil Pollut 133: 69–96.

Fearnside PM. 2015. Tropical hydropower in the clean development mechanism: Brazil’s Santo Antônio Dam as an example of the need for change. Clim Change 131: 575–89.

Chapter 20

Finer M, Villa L, and Mamani N. 2018. Gold mining continues to ravage the Peruvian Amazon. *Amaz Conserv*.

Chapter 20

Gippet JMW and Bertelsmeier C. 2021. Invasiveness is linked to greater commercial success in the global pet trade. *Proc Natl Acad Sci* **118**.

Chapter 20

Chapter 20

Hydropower Extirpates Aquatic Insects, Undermining River Food Webs.
Bioscience **66**: 561–75.

Killeen TJ. 2007. Advances in Applied Biodiversity Science: A Perfect Storm in the
Amazon Wilderness: Development and Conservation in the Context of the
Initiative for the Integration of the Regional Infrastructure of South America
(IIRSA). In: Advances in Applied Biodiversity Science: A Perfect Storm in the
Amazon Wilderness: Development and Conservation in the Context of the
Initiative for the Integration of the Regional Infrastructure of South America

Kimerling J. 2005. Indigenous peoples and the oil frontier in Amazonia: The case of

King TA. 2019. Wild caught ornamental fish: a perspective from the UK ornamental
aquatic industry on the sustainability of aquatic organisms and livelihoods. *J Fish

terra na biogeocquímica dos corpos d’água da bacia do rio Ji-Paraná, Rondônia.

Lacerda LD and Salomens W. 1998. Mercury from Gold and Silver Mining: A

Lailson-Brito Jr J, Dorneles PR, Silva VMF da, et al. 2008. Dolphins as indicators of

warming on aerobic performance and upper thermal tolerance of six tropical
freshwater fishes spanning three continents. *Conserv Physiol* **6**.

Latrubesse EM, Arima EY, Dunne T, et al. 2017. Damming the rivers of the Amazon

the world’s oceans. *Nat Commun* **8**: 15611.

Lees AC, Peres CA, Fearnside PM, et al. 2016. Hydropower and the future of
Chapter 20

Meade RH. Transcontinental Moving and Storage: the Orinoco and Amazon Rivers Transfer the Andes to the Atlantic. In: Large Rivers. Chichester, UK: John Wiley & Sons, Ltd.

Chapter 20

Nelson JA and Val AL. 2016. From the equator to the poles, a physiology section perspective on climate change. *Fisheries* 41: 409–11.

Nilsson C and Berggren K. 2000. Alterations of riparian ecosystems caused by river regulation: Dam operations have caused global-scale ecological changes in riparian ecosystems. How to protect river environments and human needs of rivers remains one of the most important questions of our. *Bioscience* 50: 783–92.

Chapter 20

Olivier K. 2001. The Ornamental Fish Market.

Pelicice FM, Pompeu PS, and Agostinho AA. 2015. Large reservoirs as ecological barriers to downstream movements of Neotropical migratory fish. *Fish Fish* 16: 697–715.

Chapter 20

Chapter 20

Soares BE. 2015. O assoreamento por rejeito de bauxita e sua relação com a diversidade taxonômica e filogenética: um estudo da ictiofauna de um lago da Amazônia Central (Lago Batata, PA).

Chapter 20

UNFCCC. The Paris Agreement. Bonn, Germany.

Val AL, Val VMF de A, and Randall DJ. 2006. The physiology of tropical fishes (Fish Physiology Series).

Chapter 20

Chapter 20

Zehev B and Vera A. 2015. Ornamental Fishery in Rio Negro (Amazon region), Brazil: Combining Social, Economic and Fishery Analyses. *Fish Aquac J* **06**.

Reference of the author with comments

Chapter 20

Chapter 20

Chapter 20

Castro, D.M.P.; Hugles, R.M.; Callisto, M. 2013. Influence of peak flow changes on the macroinvertebrate drift downstream of a Brazilian hydroelectric dam. Brazilian

Chapter 20

Crampton, W. G. R. (1999). The impact of the ornamental fish trade on the discus *Symphysodon aequifasciatus*: A case study from the floodplain forests of

80
Chapter 20

81

Chapter 20

Estivals, G., Duponchelle, F., Römer, U., García-Dávila, C., Airoa, E., Deléglise, M., & Renno, J.-F. 2020. The Amazon dwarf cichlid Apistogramma agassizii (Steindachner, 1875) is a geographic mosaic of potentially tens of species:
Chapter 20

Chapter 20

Chapter 20

doi: https://doi.org/10.1017/CB0978051180899

Chapter 20

Chapter 20

Chapter 20

Chapter 20

King, T. A. (2019). Wild caught ornamental fish: A perspective from the UK ornamental aquatic industry on the sustainability of aquatic organisms and

Chapter 20

Chapter 20

Chapter 20

Chapter 20

Pegado, Tamyris de Souza e Silva; Schmid, Kurt; Winemiller, Kirk O.; Chelazzi, David; Cincinelli, Alessandra; Dei, Luigi ; Giarrizzo, Tommaso. 2018. First evidence of microplastic ingestion by fishes from the Amazon River estuary. *Marine Pollution Bulletin* 133: 814-821. https://doi.org/10.1016/j.marpolbul.2018.06.035

Chapter 20

Resende AF de, Schöngart J, Streher AS, Ferreira-Ferreira J, Piedade MTF, Silva TSF. 2019. Massive tree mortality from flood pulse disturbances in Amazon
Chapter 20

Chapter 20

BOX 1:

Greenhouse-gas emissions from Amazon dams

Greenhouse-gas emissions from Amazon dams include both methane produced in stratified reservoirs and CO$_2$ from trees killed by flooding (Figure 3). The dead trees subsequently decay and release greenhouse gases (i.e., Abril et al., 2013; Fearnside, 1995, 2002a, 2005). In addition, trees near the edges of reservoirs suffer stress from the high water table, causing mortality (dos Santos Junior et al., 2013, 2015; Fearnside, 2009). The large amount of initial biomass when a reservoir is flooded (which is especially high in tropical forests), in addition to the presence of easily oxidized labile carbon in the soil, leads to young reservoirs being larger emitters than older ones (Barros et al., 2011). After these pools are depleted, the emissions decline but do not fall to zero (Fearnside, 2009).

Figure 3. Some of the approximately 100 million trees (diameter > 10 cm) killed in the shallow reservoir behind the Balbina Dam. The light-colored trees are dead. The reservoir has over 3000 islands (bottom panel), increasing the impact on emissions from tree mortality (as well as the fragmentation impact on terrestrial fauna). Source: Fearnside (1989). Photographs: Philip Fearnside.