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KEY MESSAGES  21 

I. Acknowledge Essential Biodiversity and Services of Amazonian Freshwater 22 

Ecosystems 23 

Amazonian Freshwater Ecosystems deliver invaluable services essential for global ecological 24 

balance, including water purification, provision, transportation, energy, and food production, 25 

along with carbon sequestration and diverse habitats. The Amazon Basin plays a pivotal role in 26 

hydrological cycling, recycling 24% to 35% of its water annually and contributing significantly 27 

to continental rainfall through 'aerial rivers' that transport 6,400 km³ of water each year. This 28 

basin also discharges an average of 1,122 megatons (Mt) of suspended sediments annually, 29 

crucial for soil fertility and ocean health. Additionally, the region's freshwater ecosystems boast 30 

remarkable biodiversity, with approximately 2,500 fish species, nearly half of which are 31 

endemic. These ecosystems are vital for the livelihoods of Amazonian communities, 32 

exemplified by the Low Solimões where the daily fish consumption per capita reaches 550 33 

grams. 34 

 35 

II. Maintain Multidimensional Connectivity in Amazonian Freshwater Ecosystems 36 

Preserving the complex connectivity within Amazonian Freshwater Ecosystems is crucial for 37 

sustaining ecological processes, water recycling, biological and cultural diversity, and the 38 

resilience of the entire basin. This connectivity encompasses longitudinal, lateral, vertical, 39 

temporal, biocultural, and bioeconomic dimensions. Notably, 223 Amazonian fish species are 40 

documented as migratory, depending heavily on these longitudinal and lateral connections. 41 

Despite this, numerous hydroelectric projects—both existing and planned—pose significant 42 

threats by disrupting these vital connections. This situation underscores the urgent need for 43 

comprehensive management and proactive policy measures to protect the Amazon’s freshwater 44 

ecosystems. 45 

 46 

III. Rapid degradation of Amazonian Freshwater Ecosystems 47 

Amazonian Freshwater Ecosystems are undergoing rapid degradation due to water pollution, 48 

oil spills, mining, dam construction, deforestation, and climate change. Compounding this 49 

issue, there are no sewage treatment plants in any Amazon Basin cities, and mining and oil 50 

projects frequently operate with substandard environmental practices, leading to significant 51 

environmental liabilities. These factors not only fragment rivers but also sharply reduce their 52 

biodiversity, functionality, and the provision of ecosystem services. The repercussions of this 53 
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degradation are severe, including loss of biodiversity, increased frequency and intensity of fires, 54 

disruptions to biogeochemical cycles, and significant deterioration in water quality and 55 

availability. These changes have detrimental impacts on fish populations, energy production, 56 

and the well-being of Indigenous Peoples and local communities (IPLCs). 57 

 58 

IV. Conservation, Remediation and Restoration as Imperatives 59 

Conservation, remediation, and restoration must be prioritized across the entire Amazon Basin. 60 

This includes developing specialized conservation frameworks for freshwater ecosystems and 61 

enhancing sewage treatment in Amazonian cities. There is a critical need for major projects that 62 

actively restore riparian vegetation, buffer floodplain areas, and reconnect rivers, streams, and 63 

wetlands. These efforts should aim to improve water quality, protect headwater regions, and 64 

establish connectivity corridors. Moreover, applying innovative technologies to develop more 65 

effective water treatment solutions is essential for maintaining ecological flows and restoring 66 

the health of freshwater ecosystems. Collaborative interdisciplinary efforts involving citizens, 67 

stakeholders, NGOs, academia, and governments are vital for these initiatives to succeed. 68 

 69 

V. Inclusivity and Community Management 70 

The Amazon Basin is home to 47 million people, including an indigenous population of 2.2 71 

million. Recognizing Indigenous Peoples and Local Communities (IPLCs) as essential stewards 72 

of Amazon Freshwater Ecosystems is crucial. Integrating their traditional knowledge with 73 

scientific approaches enhances conservation, remediation, and restoration efforts. There is 74 

compelling evidence that inclusive governance and co-management not only sustain ecosystem 75 

health but also boost local economies. Emphasizing the recovery of ancestral knowledge and 76 

cultural beliefs about water—including its reverence as a deity and its role in healing social ties 77 

with nature—further enriches these efforts. 78 

 79 

VI. Transnational Coordination, Collaboration and Financial Support 80 

Each Amazonian country must develop and implement national public policies for freshwater 81 

ecosystems, recognizing rivers, streams, and wetlands not merely as water sources but as unique 82 

ecosystems providing essential services. It is imperative to establish transnational agreements 83 

for the management and recovery of these systems, acknowledging that eight countries and one 84 

territory are interconnected by the Amazon Waters. Enhanced collaboration among these 85 

nations is crucial to tackle transboundary environmental challenges effectively and to promote 86 
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the adoption of sustainable alternative energy sources. This approach will ensure 87 

comprehensive, cohesive management across the Amazon Basin. 88 

 89 

RECOMMENDATIONS  90 

I. Cease Dam Construction and Promote Decentralized Sustainable Energy: Halt dam 91 

construction in the Amazon and invest in decentralized sustainable energy projects that bolster 92 

the local community economies. 93 

 94 

II. Enhance Water Treatment and Pollution Control: Urgently invest in water treatment 95 

infrastructure, enforce pollution control policies, and strengthen monitoring efforts. Promote 96 

the restoration of riparian vegetation, especially in areas degraded by illegal mining. 97 

 98 

III. Integrate Deforestation Reduction with Climate Policy: Reduce deforestation and 99 

degradation in Amazonian forests and freshwater ecosystems by incorporating climate change 100 

policies and forest protection strategies into regional development planning. 101 

 102 

IV. Invest in Science and Cross-Disciplinary Research: Urgently invest in science, 103 

technology, and innovation to improve monitoring and support cross-disciplinary research 104 

aimed at understanding and addressing stressors on Amazonian Freshwater Ecosystems. 105 

 106 

V. Empower IPLCs in Freshwater Management: Support the leadership of Indigenous 107 

Peoples and Local Communities (IPLCs) in freshwater management and conservation, respect 108 

cultural diversity, and integrate Indigenous knowledge into governance structures and scientific 109 

innovation. 110 

 111 

VI. Debate New Conservation Frameworks: New conservation frameworks should be 112 

discussed and proposed, such as the creation of Fluvial Community Reserves. 113 

 114 

VII. Establish Transnational Governance for River Protection: Transnational governance 115 

agreements are crucial for the protection of longitudinal river ecosystems. 116 

 117 
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VIII. Secure International Financial Support: Call for international and intergovernmental 118 

financial support to enable local, regional, and global initiatives aimed at conserving and 119 

restoring Amazon Freshwater Ecosystems. 120 

 121 

GRAPHICAL ABSTRACT (UNDER CONSTRUCTION) 122 

 123 

A. THE AMAZON BASIN: THE LARGEST AND MOST DIVERSE 124 

FRESHWATER NETWORK ON THE PLANET 125 

 126 

Amazon freshwater characteristics, functions and biodiversity 127 

The formation of the Amazon River dates from 10 to 4,5 million before present time, when 128 

western and eastern Amazon became connected, driven by the uplift of the Andes and long-129 

term erosion processes. Through millions of years, the historical changes in the courses of major 130 

lowland rivers and floodplains had a profound effect on the richness and resilience of the 131 

Amazon biodiversity (Cracraft et al. 2020; Laranjeiras et al. 2021; Val et al. 2021). Nowadays, 132 

the Amazon basin spans 7.3 million km2, of which around 40% is in the Andes. At the mouth 133 

of the river, it boasts a discharge of approximately 220,000m3 per second (Costa et al. 2021), 134 

constituting 16-22% of the Earth's freshwater river discharge (Costa et al 2021). The intricate 135 

Amazonian hydrological network comprises approx. 15,000 catchments (300-1000 km2) 136 

(Venticinque et al., 2016) and a diverse array of other freshwater ecosystems, such as tectonic 137 

lakes, swamps, wet meadows, Andean freshwater marshes, mangroves, meander lagoons, 138 

riparian wetlands, and expansive floodplains (Junk et al. 2014, Moraes et al. 2021).   139 

 140 

Roughly 30% of the Amazon region can be described as wetlands, encompassing various types 141 

of ecosystems at the interface between land and water, distinguished by factors such as flood 142 

frequency, depth, duration, water chemistry, vegetation, and associated wildlife (summarized 143 

in Junk et al. 2011). Carving through the landscape, these waters sculpt a mosaic of aquatic 144 

(e.g., rivers and lakes), semi-aquatic (i.e., systems with periodically flowing waters), and semi-145 

terrestrial (i.e. systems flooded during periods of different length) freshwater habitats (Milton 146 

and Finlayson 2017). Also, the distinctive geomorphological, and physical-chemical water 147 

attributes (e.g. temperature, pH, dissolved oxygen, and organic and inorganic carbon) of these 148 

environments foster unparalleled adaptive strategies among its organisms (Guayasamin et al. 149 

2021; Val & Almeida-Val, 1995; Gonzalez et. al. 2002, 2024; Johansson et al. 2017).  150 
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 151 

Variability through time is a major aspect of the definition of these wetlands. That is because 152 

fluctuations in rainfall and river discharge drive pronounced seasonal changes in the water level 153 

of large Amazon rivers, causing them to overflow their banks into adjacent floodplains. Because 154 

it extends into both hemispheres, the Amazon is characterized by several rainfall regimes due 155 

to the alternating warming of each hemisphere. The Amazonian rainy season occurs in austral 156 

winter in the north and austral summer in the south. The northwest equatorial region 157 

experiences low rainfall seasonality, with wet conditions throughout the year (e.g., Figueroa 158 

and Nobre, 1990; Espinoza et al. 2009, 2015). The northern portion of the Amazon basin, in the 159 

Roraima region, as well as the southern part, by the Cerrado, present smaller wetland areas, as 160 

precipitation is much lower. Because of this, as environmental degradation advances in both of 161 

those areas, the native forest there is replaced by grasslands, or savannas, losing critical 162 

ecological services. 163 

 164 

Depending on the type of flooding, wetlands can be subject to stable water-levels or oscillating 165 

water-levels. The wetlands with predictable monomodal pulses are of two classes, interfluvial 166 

wetlands subject to low-amplitude pulses, and floodplains of large rivers subject to high-167 

amplitude pulses. In particular, the seasonal flood pulse of the major rivers strongly influences 168 

the structure and function of floodplains (Junk et al. 1989; Melack and Coe 2021). Floodplains 169 

of large rivers cover approximately 750,000 km2 (aprox. 11%) of the area of the Amazon basin 170 

(Wittmann and Junk, 2016). The associated rivers may be of Andean sedimentary origin, 171 

constituting the várzeas of fertile white waters (e.g. Amazon River), or the igapós, when 172 

draining the ancient Guianas or Central Brazil geologically old shields, which are acidic and 173 

carry low amounts of sediments. These seasonally flooded forests are of vital importance and 174 

constitute the most species-rich floodplain forests on the Planet. Lastly, periodic flooding and 175 

high (sometimes variable) salinity create specific conditions in coastal wetlands, such as 176 

mangroves that occur mostly along the coasts of Amapá, Pará, and Maranhão, which are centers 177 

of biodiversity and play an important role as link between inland water and the marine 178 

environment (Junk et al. 2011).  179 

 180 

All this rich tapestry of life experiences seasonal fluctuations in river levels and the receding 181 

and rising of seasonal floods are crucial for sustaining the nutrient and biological cycles of the 182 

region as a whole. Connectivity between river systems and their associated lakes is vital for the 183 
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vegetation and fauna of these environments, in terms of the maintenance of viable habitat, seed 184 

dispersal and feeding. Ultimately, the essence of the Amazon hinges upon the 185 

interconnectedness of its waterways, facilitating the exchange of water, nutrients, sediments, 186 

and biodiversity (Junk, 2013). 187 

 188 

The multidimensional connections of the Amazon  189 

We can identify distinct dimensions of water connectivity within the basin. In all of them, time 190 

takes a significant role, as there is intense variability and change in freshwater habitats through 191 

the seasons. For the purposes of this policy brief, we consider five dimensions of connectivity 192 

through the basin taking into consideration both ecological and socio-economic aspects: the 193 

longitudinal dimension, linking the Andes with the rest of Amazon and with the Atlantic 194 

Ocean; the lateral dimension, connecting rivers, forests, and wetlands to provide conditions 195 

for numerous species to strive; the vertical dimension, encompassing interactions between 196 

wetlands, aerial rivers, and groundwater; the biocultural dimension, incorporating the 197 

relationship of human population’s cultural traditions and beliefs with rivers, wetlands and their 198 

aquatic biodiversity; and the bio-economical dimension, acknowledging the provision of food, 199 

transportation, drinking water, and economic activities by aquatic ecosystems. We advocate for 200 

conservation initiatives that ensure open connectivity within the basin, considering all these 201 

dimensions, while ensuring equity and inclusion in conversation planning, policies and 202 

practices. 203 

 204 

Longitudinal Dimension: The Amazon-Andes-Atlantic transition is a crucial zone of 205 

hydrological connection (Encalada et al. 2019). The region experiences high rainfall rates 206 

(between 6000 and 7000 mm/year) due to interactions between regional atmospheric circulation 207 

and temperature and moisture contrasts (Giovannettone and Barros, 2009; Poveda et al., 2014; 208 

Espinoza et al., 2015; Chavez and Takahashi, 2017). These rainfall rates result in significant 209 

erosion, providing nearly all of the suspended sediment load observed in the Amazon Basin. It 210 

is estimated that the Amazon River exports between 550 and 1500 Mt/year of sediment load to 211 

the Atlantic Ocean (Wittmann et al 2011), with 90% of total originating in the Andes (Meade 212 

et al. 1985). In regard to the transport of nutrients, the primary contributions from the 213 

longitudinal connectivity of the river channel consist of water and inorganic material, whereas 214 

the lateral connection between the river and floodplain plays a more significant role in the 215 

production of organic material (Junk et al.  2011). Also, many species depend on this transition 216 
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zone for their life cycles, including  long migration journeys related to fish reproduction that 217 

sustain fisheries throughout the basin (Baigún and Valbo-Jørgensen, 2023).  218 

 219 

Lateral Dimension: The varied aquatic and semi-aquatic habitats of the lowland Amazon are 220 

subject to seasonal fluctuations (Figure 1, Box 1), creating interconnected corridors during high-221 

water periods that facilitate species migration and seed dispersal between rivers and lakes with 222 

the floodplain, and as refuge during low-water periods (Junk 2001). The adaptive capabilities 223 

and genetic diversity of Amazonian aquatic biota is highly dependent on habitat exchange, 224 

allowing organisms such as fish and aquatic mammals to seek optimal conditions for survival 225 

(Martin and da Silva 2004; Caldas et al. 2022; Junk 1984). Moreover, floodplains store and 226 

transport water, sediments and nutrients during high water periods influencing high primary 227 

and secondary production, thus sustaining fishery resources (Junk 2001). Lastly, the 228 

evolutionary interaction between fish-tree fruits in the Amazon highlights the critical role of 229 

river-floodplain connectivity for plant recruitment dynamics and diversity (Correa et al. 2015; 230 

Araújo-Lima & Goulding 1998). 231 

 232 

Vertical Dimension: Approximately 25–50% of the total annual rainfall observed in the 233 

tropical Andes originates from Amazon tree transpiration (Staal et al. 2018). Part of the 234 

produced moisture is transported westward by winds flowing in low altitudes (~1km), known 235 

as "aerial rivers" reaching as far south as northern Argentina and supplying water to other major 236 

river basins on the continent (Costa et al. 2021; Chung et al. 2022).  These aerial rivers carry 237 

an amount of water vapor equivalent to the average flow of water at the mouth of the Amazon 238 

River (10-23 billion liters per day) (Arraut et al. 2012). Moreover, the large amount of rainfall 239 

infiltrates the ground and contribute to the formation of large aquifers like the Alter do Chão-240 

Içá aquifer system, with a recharge amount estimated to be at least 236,400 and 350,000 241 

m3/year (Val et al. 2021, Azevedo & Campos, 2021). 242 

 243 

Biocultural Dimension: IPLCs hold worldviews (Box 2), linguistic conceptualizations, 244 

spiritual connections and experiential knowledge of Amazonian Freshwater Ecosystems gained 245 

over many years (Clement et al. 2015; Neves et al. 2021; Athayde et al. 2024 in progress). 246 

Archaeological sites found in both large rivers and small tributaries indicate that pre-Columbian 247 

Indigenous populations have modified significant portions of Amazonian forests and freshwater 248 

ecosystems such as floodplains and wetlands over different time periods (McMichael et al. 249 
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2012; Thomas et al. 2015). Recently, indigenous and local knowledge (ILK) systems have been 250 

combined with scientific knowledge and technology to protect and restore freshwaters and 251 

headwaters through co-management experiences and fisheries agreements (Box 3), including 252 

cases in which IPLCs have been meaningfully involved in decision-making processes (Campos-253 

Silva et al. 2019; Correa et al. 2020).  254 

 255 

Bioeconomic dimensions: Fish are important providers of protein, micronutrients, and income 256 

for both rural and urban households across the Amazon Basin (Barletta et al. 2010). The 257 

estimated total extraction of fish in the Amazon basin is between 422,000 and 473,000 tons per 258 

year, almost 75% of which is represented by the Brazilian part of the basin (Sirén and Valbo-259 

Jørgensen, 2022). There is also a great significance of freshwater ecosystems for Amazonian 260 

agro-forestry crops and resources of great economic importance (such as cacao, açaí palm and 261 

many others), which have been domesticated or semi-domesticated by IPLCs (Clement et al. 262 

2010; Athayde et al. 2021). Finally, fluvial transport plays a crucial role in accessing remote 263 

areas, enabling services such as public health to meet the demands of rural areas (Rocha et al. 264 

2023). 265 

 266 

B. MAIN DRIVERS OF DEGRADATION OF FRESHWATER 267 

ECOSYSTEMS  268 

The ecosystems of the Amazon have been facing significant challenges due to human actions 269 

that promote degradation of aquatic habitats and compromise the crucial connectivity of the 270 

water network. In this topic, those drivers of degradation that cause greater concerns are 271 

detailed. 272 

 273 

River Fragmentation 274 

The primary threat to freshwater connectivity is river fragmentation, particularly due to 275 

hydropower development (Grill et al. 2019), which currently impacts rivers ranging from the 276 

Andes to large basins like the Marañon, Madeira, Napo, Tapajós, Tocantins, and Ucayali 277 

(Winemiller et al. 2016; Latrubesse 2017; Anderson et al. 2018; Caldas et al. 2022) (Figure 2). 278 

 279 

Dams alter riverine habitats by changing hydrological patterns, sediment flows (Timpe & 280 

Kaplan 2017; Anderson et al. 2019; Caldas et al. 2022; Chaudhari and Pokhrel 2022), 281 

temperature, and nutrient balance (Pavanato et al. 2016), affecting various freshwater organisms 282 
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and causing declines in migratory species (Caldas et al. 2022). Additionally, studies show that 283 

some lowland dams in the Amazon may exceed in greenhouse gas emissions per unit of 284 

electricity generated when compared to fossil fuel power plants (Almeida et al. 2019). 285 

 286 

Fragmentation of Amazon's Freshwater Ecosystems cause significant socio-economic and 287 

socio-cultural impacts on IPLCs, including livelihood impoverishment, loss of food security, 288 

as well as psychological and spiritual effects (Athayde et al. 2019). Research has shown that 289 

changes in diets and fisheries can affect food security and consumption patterns among 290 

Amazonian populations (Torres-Vitolas et al. 2019; Begossi et al. 2018; Blundo-Canto et al. 291 

2020), exacerbating malnutrition in riverine and urban communities (Heilpern et al. 2021). 292 

Freshwater Degradation 293 

The loss of freshwater and its biodiversity in Amazonian ecosystems is strongly related to 294 

environmental degradation, resulting from manifold activities (Piedade et al. 2024), including 295 

such as water capture for agricultural activities and livestock. Agricultural and livestock uses 296 

are the prime drivers of wetland loss. Land-cover change related to cattle ranching and crop 297 

production has affected about 20% of the Amazon basin, particularly to the south and 298 

southwestern region, where native forest has been replaced by grassland and savannas (Castello 299 

& Macedo, 2016). Thus, this land use is usually associated with removal of vegetation, loss in 300 

biodiversity and the occurrence of hydrological droughts, which are exacerbated during severe 301 

hydrometeorological events. 302 

Different sources of pollution are also a major concern. Domestic and industrial sewage 303 

discharged into water bodies represent dangerous sources of contamination. Also, inadequate 304 

disposal of solid waste results in leaching of liquids generated by their decomposition, which 305 

are highly toxic to the environment and to human health. 306 

Oil spills affect organisms in many ways, leading to negative effects such as impaired 307 

development in aquatic plants (Lopes et al. 2009) or intoxication in fish (Brauner et al. 1999; 308 

Val & Almeida-Val, 1999). Exposure to oil spills on humans may lead to negative impacts such 309 

as effects on mental health, physical and physiological effects, toxic effects in the 310 

immunological and endocrine systems, damages in the genetic material (summarized by Laffon 311 

et al. 2016).  312 
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Mining impacts freshwater ecosystems directly by altering stream and river morphology due to 313 

excavations, by increase in sediment loads, by the large-scale deforestation related to it, and by 314 

introducing pollutants such as mercury (Wittman & Junk, 2016). The latest study shows that 315 

more than a fifth of the fish sold in 17 cities in six states of the Amazon region of Brazil contains 316 

dangerous levels of mercury (Basta et al. 2023). In humans, long term exposure to either 317 

inorganic or organic mercury can permanently damage the brain, the kidneys, and also bring 318 

harm to the developing fetus (summarized by Chan et al. 2010). 319 

Climate Change 320 

Ongoing climate change poses significant threats to the Amazon, impacting the entire 321 

ecosystem and its interconnections. Climate change alters rainfall, temperature, and moisture 322 

patterns across the Amazon Basin, impacting freshwater and wetlands ecosystems. Climate 323 

models predict a decline in annual precipitation for the future, particularly in the southern basin, 324 

heightening the region's vulnerability (Agudelo et al. 2023). This can lead to many streams and 325 

rivers ceasing to flow for several months in certain areas, which can result in local extinctions 326 

of species (Datry et al. 2023). Such changes lead to adaptations in aquatic fauna and flora, but 327 

can also result in higher mortality rates among fish (Barletta et al. 2010) and aquatic mammals 328 

(Marmontel et al. 2024). 329 

Deforestation and Forest Fragmentation 330 

High deforestation rates impact Amazon Freshwater Ecosystems in different ways, including 331 

important changes in the regional hydrological cycle. Deforestation reduces evapotranspiration 332 

and increases temperatures, thereby decreasing the amount of water vapor in the atmosphere 333 

(Wongchuig et al. 2023). This can reduce the recycling of precipitation, the surface runoff and 334 

sediments exported from the Andes to the low-lying Amazon, increasing the risk of droughts, 335 

tree mortality and fires (Nobre et al. 2016; Sierra et al. 2021.). 336 

C. SOLUTIONS TO MAINTAIN AND RESTORE AMAZON 337 

FRESHWATER ECOSYSTEMS 338 

 339 

Concrete actions and the formulation of public policies (Figure 3) are proposed here to 340 

address the pressing need for preserving and enhancing freshwater connectivity in the 341 

Amazon, encompassing longitudinal, lateral, vertical, temporal, biocultural, and bioeconomic 342 
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linkages. We highlight the need for coordination, cooperation, and collaboration among the 343 

Amazonian countries around policies, practices, and incentives to protect and restore 344 

freshwater ecosystems. The following recommendations are put forth: 345 

 346 

I. Reduction of River Fragmentation: Promoting Longitudinal Connectivity in Amazon 347 

Freshwater Networks 348 

 349 

1. Cease Construction of Dams: We advocate for a moratorium on dam construction 350 

within the Amazon basin. Instead, we propose investment in innovative, decentralized, 351 

and sustainable alternative energy projects, which engage society and communities as 352 

stake and right holders. These initiatives not only provide income for local populations 353 

but also safeguard biocultural and bioeconomy connections and activities, as well as 354 

critical ecosystem functions such as migratory routes and sediment transportation. 355 

2. Dam Removal for Connectivity Restoration: Obsolete and inefficient dams that 356 

significantly disrupt local economies and impede fish migration and fisheries 357 

production should be considered for removal. Other existing dams can be integrated 358 

with alternative energy systems, such as solar, in order to be more efficient. 359 

3. Establishment of Fluvial Community Reserves: We recommend the creation of local 360 

and/or regional fluvial community reserves spanning international borders. These 361 

reserves would uphold diverse levels of freshwater connectivity, supporting IPLCs to 362 

sustainably manage resources while preserving invaluable ecosystems by recognizing 363 

the interconnectedness of freshwater ecosystems with socio-economic well-being. 364 

4. Transnational Governance Agreements: Developing transnational agreements for 365 

regional governance is essential to safeguard free-flowing rivers along national 366 

boundaries. Cross-border collaboration efforts are needed to identify and implement 367 

sustainable energy and infrastructure projects with minimized impacts and identifying 368 

solutions for energy and infrastructure projects. 369 

 370 

II. Addressing Water Pollution and Restoring Riparian Vegetation to Preserve Lateral 371 

Connectivity in the Amazon Freshwater Network 372 

 373 

5. Investment in Water Treatment Infrastructure: It is imperative to invest in water 374 

treatment plants to effectively treat domestic and industrial effluents originating from 375 
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Amazonian cities and rural communities. This investment aims to restore the freshwater 376 

quality of Amazon waterways, safeguarding the health of aquatic ecosystems and 377 

human populations. 378 

6. Formulation of Pollution Control Policies: Public policies must be formulated and 379 

enforced to regulate pollution from diverse sources, including agricultural runoff and 380 

industrial discharges. These policies are essential for maintaining optimal water quality 381 

across Amazonian water bodies and mitigating the adverse impacts of pollution on both 382 

ecological and human health.  383 

7. Strengthening Monitoring and Enforcement: Implementing stringent monitoring 384 

mechanisms and imposing penalties for both illegal and legal activities, such as mining, 385 

that contribute to freshwater degradation and pollution is crucial. This approach ensures 386 

accountability and deters harmful practices that compromise the integrity of Amazonian 387 

Freshwater Ecosystems. 388 

8. Restoration of Riparian Buffer Zones: To uphold lateral and vertical connectivity, 389 

efforts should be directed towards restoring and maintaining riparian buffer zones with 390 

native plant species along river corridors. Also, these riparian buffers retain sediments, 391 

favor successional processes, and serve as natural filtration systems, mitigating influx 392 

of pollutants into freshwater ecosystems while promoting biodiversity and ecological 393 

resilience. 394 

 395 

III. Addressing Climate Change Impacts to Preserve Vertical Connectivity in the Amazon 396 

Freshwater Network 397 

 398 

9. Deforestation and Degradation Reduction: Urgent action is required to 399 

significantly reduce deforestation and degradation of forests and freshwater ecosystems 400 

(Figure 4). These activities are vital for maintaining crucial processes such as carbon 401 

sequestration and water evaporation and evapotranspiration. Also, this will promote the 402 

reduction of emissions, which is a key step to mitigate global climate change.  403 

10. Integrating Climate Change Strategies: It is imperative to integrate climate 404 

change mitigation and adaptation strategies into regional and local planning efforts. This 405 

holistic approach fosters sustained ecosystem resilience, enabling Amazonian 406 

freshwater ecosystems to withstand and adapt to the challenges posed by climate 407 

change, such as changes in precipitation, while maintaining their vital connectivity.  408 
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 409 

IV. Promoting Investment in Science, Technology, and Innovation to Foster Scientists, 410 

Indigenous Communities and Civil Society Connectivity within the Amazon Freshwater 411 

Network 412 

 413 

9.  Enhanced Monitoring of Freshwater Ecosystems: It is imperative to monitor 414 

Amazonian freshwater ecosystem dynamics across various scales and their responses to 415 

drivers of environmental degradation. Also monitor hydrology, chemistry diversity, 416 

life-history of organisms, food web dynamics, critical ecosystem process and fisheries, 417 

the relationship between water-use by agro-industry and water table, among others. This 418 

necessitates investment in research focused on understanding the impacts of 419 

compounding disturbances and fostering freshwater resilience, providing vital 420 

information to bolster local governance efforts. 421 

15. Invest in Research and Innovation. We advocate for substantial investment in 422 

transdisciplinary research aimed at developing innovative and technological solutions 423 

(Box 4) tailored for the unique bioeconomic challenges concerning fisheries, floodplain 424 

production, and conservation across various scales. Investment in programs dedicated 425 

to Amazon Freshwater Research and Technologies Initiatives within higher education 426 

institutions across Amazonian countries is also crucial.  427 

 428 

16. Facilitating Scholar, Researcher and Practitioner Exchange: Developing public 429 

policies to facilitate the exchange of scholars, researchers and practitioners within the 430 

Amazon region is essential. By promoting collaboration and knowledge sharing, these 431 

policies catalyze the advancement of science, technology, and innovation initiatives, 432 

fostering a more holistic approach to addressing the complex challenges facing 433 

Amazonian freshwater ecosystems. 434 

 435 

IV. Enhancing Collaboration and Conservation Strategies for Biocultural and Bioeconomic 436 

Connectivity in the Amazon Freshwater Network 437 

 438 

17. Community Empowerment for Conservation: Local communities must be 439 

protagonists of the conservation of Amazon Freshwater Ecosystems, particularly 440 

through the designation of protected areas and the establishment of Fluvial Community 441 
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Reserves. By empowering communities in conservation efforts and recognizing them as 442 

stake and right holders, we can ensure the sustainable management of these invaluable 443 

resources. 444 

18. Restoration Initiatives: Investment in science-based and nature-based restoration 445 

programs tailored to the unique characteristics of each ecosystem is essential. 446 

Empowering local communities to develop restoration projects fosters a sense of 447 

ownership and responsibility, potentially leading to effective conservation outcomes. 448 

19. Management of Fisheries: Implement local and regional public policies for the 449 

sustainable management of fisheries. Encourage the exchange of successful regional 450 

practices and strategies in fisheries management to prevent the depletion of fish stocks 451 

respecting the carrying capacity of the ecosystem and the patterns of migratory fish. 452 

20. Recognition  of Indigenous and Local Knowledge:  The traditional knowledge of 453 

local and indigenous communities regarding the management and use of freshwater 454 

ecosystems must be recognized and respected. Integrating this knowledge into 455 

conservation strategies enhances their effectiveness and promotes cultural preservation. 456 

24. Collaborative Governance Structures: Establishing collaborative governance 457 

structures is vital to ensure culturally sensitive and sustainable management of 458 

freshwater resources. These structures should include local communities in decision-459 

making processes, fostering a sense of shared responsibility and ownership. 460 

25. Regional Collaboration: Encouraging collaborative efforts among Amazon basin 461 

countries is essential to address shared challenges and formulate joint conservation and 462 

restoration strategies. 463 

26.Global Support for Sustainable Practices: Seeking global cooperation and 464 

financial support is crucial to aid in the implementation of sustainable policies and 465 

practices in the Amazon freshwater network.  466 
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 713 
 714 
Figure 1. Seasonal cycles of river discharges (m3 s-1). Fluctuations in river discharge drive pronounced 715 
seasonal changes in the water level of large Amazon rivers, causing them to overflow their banks into 716 
adjacent floodplains. 717 
  718 
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 719 
 720 
Figure 2. Existing and planned Hydroelectric Plants in the Amazon pose significant threats to freshwater 721 
ecosystems by disrupting their vital connections. 722 
  723 
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 724 
 725 
Figure 3. Drivers of freshwater ecosystem degradation and public policies proposed to address the 726 
pressing need for preserving and enhancing freshwater connectivity in the Amazon. 727 
  728 
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 729 
Figure 4. Actions needed to avoid degradation of freshwater ecosystems.  730 
 731 
 732 
Box 1: Seasonal rainfall cycles 733 

Seasonal rainfall cycles in the upper part of the Andean-Amazon Basins of Colombia and Ecuador 734 

follow an unimodal regime with a wet season during the austral winter (Laraque et al. 2007; Arias et al. 735 

2021). In the lowland part of the Amazon-Andes of Ecuador predominates a bimodal annual cycle of 736 

precipitation, with peak discharge observed around March-April and October-November (Campozano 737 

et al. 2018). Seasonal rainfall cycles in the upper part of the Andean-Amazon Basins of Colombia and 738 

Ecuador follow an unimodal regime with a wet season during the austral winter (Laraque et al. 2007; 739 

Arias et al. 2021). In the lowland part of the Amazon-Andes of Ecuador predominates a bimodal annual 740 

cycle of precipitation, with peak discharge observed around March-April and October-November 741 

(Campozano et al. 2018). Fluctuations in rainfall and river discharge drive pronounced seasonal changes 742 

in the water level of large Amazon rivers, causing them to overflow their banks into adjacent floodplains  743 

 744 

Box 2: Water, myths and traditional knowledge 745 

Regarding the conservation of freshwater ecosystems, these traditional knowledges offer healthy 746 

guidance regarding the management of these habitats and respect to the services it provides. That is 747 

because the worldview of many Indigenous Peoples understands natural resources not as owned by 748 

humans, since spirits or masters inhabit plants, animals, minerals or rocks (Athayde et al. 2014).  For 749 

the Munduruku people, for example, to relate to the forest and to the rivers also implies relating to the 750 

spirits that inhabit them. Therefore, they must negotiate conviviality and respectful exchanges with all 751 

beings, being able to articulate multiple existing worlds.  Traditional knowledge also forms the basis for 752 

understanding complex ecological processes that would not be described without communities passing 753 

them down from generation to generation. Another example of this is the description of a spawning area 754 

in the Beni basin based on fishermen's accounts indicating the fishing of pairs of dorados near the 755 

Altamirani community. Characterizing this area allowed extrapolation of its characteristics to other 756 

basins, identifying at least 22 other potential dorado spawning zones (Miranda & Venticinque, 2022), a 757 

key basis for management decision-making in these areas and enhancing another role of overlapping 758 

protected areas. 759 

 760 

Box 3: The quest for community management and inclusive governance 761 

By integrating the local population’s territoriality and traditional ways of living with new techniques to 762 

enhance current practices, community management of natural resources contributes to conservation 763 

efforts and to the political and social strengthening of areas where it is implemented. The community-764 

based approach (Figure 5) aims to develop decentralized and locally based systems that both provide 765 

benefits to local inhabitants and protect ecological systems (Peralta et al., 2019; Lavandera, 2023). 766 



 

26 
 

Essentially, co-management involves participatory decision-making processes where the regulation of 767 

natural resource use is shared among users, with joint responsibility among national or subnational 768 

governments, NGOs, and local cooperatives. In Brazil, for instance, the Mamiraua Institute has 769 

demonstrated the success of this approach, particularly in pirarucu management (Castello et al., 2009), 770 

community-based timber extraction (Waldhoff et al., 2013), ecotourism (Peralta et al., 2018), and in 771 

monitoring of caiman and dolphin hunting  (Pimenta et al., 2018).  772 

 773 
 774 

 775 
Figure 5. Community-Based Management for Conservation and Socio-Political Resilience in 776 
Freshwater Ecosystems. 777 
 778 
 779 

Box 4: Technology and nature-based solutions: a pathway out of degradation 780 

Investments in research and innovation have led to already existing technologies with the potential to 781 

maintain social and economic importance of some extractive activities, while offering alternatives that 782 

avoid further degradation. For example, a potential use of cyanogenic plants has been demonstrated for 783 

gold leaching, such as the bitter cassava, presenting itself as an alternative for less impactful artisanal 784 

and small-scale gold mining (Torkaman, 2023).  The replacement of mercury by local plants would be 785 

a significant step towards sustainable development for the region, given the technologies are adapted to 786 

site-specific conditions. Also, aquaculture has a great potential in providing protein to the region or even 787 

abroad, promoting social and economic development. In that regard, the development of biofloc systems 788 

in aquaculture reduces feed costs, stimulates lesser water use by reduction of water exchange rates and, 789 

finally, and replaces fish meals and fish oils in the feeding of the animals (Khanjani et al. 2023). Lastly, 790 

there are already successful cases for alternative energy sources in Amazonia that could help the region 791 
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phase out of the dependency on hydroelectric dams. For instance, in Ecuador, 12 villages of the 792 

Mukucham family, deeply in eastern provinces of the country, already rely on solar panels for 793 

transportation, for powering schools and for fueling ecotourism (Alarcon, 2024). 794 

 795 

Box 5: Fluvial Community Reserves: Pioneering a Novel Conservation Approach 796 

River systems, unlike their terrestrial counterparts, have historically received less regulatory attention 797 

despite their critical ecosystem services. Globally, a significant proportion of rivers lack protection, with 798 

many facing severe conservation challenges surpassing those of terrestrial ecosystems. Addressing this 799 

disparity in river conservation necessitates acknowledging rivers as conservation entities and instituting 800 

effective governance for their preservation. 801 

Simultaneously, any new policy in that matter must not only prioritize conservation objectives but also 802 

recognize the rightful communities who directly benefit from river systems. Across the Amazon Basin, 803 

rivers provide essential resources such as water, food, tourism, transportation, and imbue significant 804 

cultural and spiritual connections. Hence, empowering and involving indigenous and local communities 805 

in crafting conservation frameworks becomes imperative. This ensures that issues related to river use 806 

are identified and solutions are aligned with their cultural and socioeconomic contexts. 807 

Therefore, the concept of Fluvial Community Reserves is presented as a provocative idea aiming to 808 

spark discussions on governance models that address the challenges of river conservation while 809 

empowering dependent communities. These reserves should be a result of a transdisciplinary approach, 810 

one that seeks to protect river flow, riparian vegetation, biodiversity, and ecosystem functions, while 811 

equally preserving legitimate and sustainable human interactions with the river. 812 

To effectively establish Fluvial Community Reserves, several key elements must be considered: active 813 

community involvement in decision-making, backed by political and long-term financial support; 814 

comprehensive assessment of river and watershed qualities to identify key ecological attributes 815 

requiring action; establishment of appropriate legal frameworks and rights over natural resources 816 

through community engagement and river assessments; fostering institutional agreements and 817 

transnational collaboration structures; and implementing evaluation and adaptive management 818 

through monitoring and periodic assessments. 819 

An illustrative case is the Curaray River, home to the Curaray-Nushiño River Reserve, situated within 820 

the habitat of indigenous Waorani and Kichwa communities. This reserve, protecting the Curaray River's 821 

headwaters, serves as a vital corridor linking two Biosphere Reserves: Yasuní and Sumaco-Napo 822 

Galeras. Indigenous communities recognize the interconnectedness of river headwaters and lowlands, 823 

crucial for the forest's interaction with floodplain areas. Such river systems provide habitats for 824 

migratory fish, aquatic mammals, and other species sustaining local livelihoods. From examples of 825 



 

28 
 

conservation and management like these, we can foster the last opportunity to protect rivers for their 826 

natural properties. 827 

 828 
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